首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NaOH活化法中碱炭比对孔结构和电化学性能的影响   总被引:1,自引:0,他引:1  
采用沥青焦为原料,以NaOH化学活化法制备出不同碱炭比(R)系列活性炭.用氮气吸附和脱附等温线计算出BET比表面积、DFT孔径分布及孔容,并且通过直流循环充放电、循环伏安等表征方法研究了其电化学性能.实验结果表明,R值对活性炭的BET比表面积、DFT孔径分布及孔容有良好的调控作用:当R=5时,其最大BET比表面积为1089m2/g,孔容达0.53cm3/g,当R=3时,其孔径分布在1.0-2.0nm百分比达36.2%;其直流循环充放电曲线较好,循环伏安曲线也近似矩形,表明具有良好双电子层电容器电极材料特性,在3mol/L的KOH电解液体系中,最大质量比电容、体积比电容、单位面积比电容分别达202F/g、143F/cm3、32.9μF/cm2;在1mol/L(C2H5)4NBF4/Propylene Carbonate(PC)电解液体系中,最大质量比电容、体积比电容、单位面积比电容分别达149F/g、107.3F/cm3、20μF/cm2.对KOH和(C2H5)4NBF4/PC电解质吸附的最佳孔径分别为1.3nm,1.5nm左右.  相似文献   

2.
Carbonaceous adsorbents with controllable surface areas were chemically activated with KOH at 780 degrees C from char that had been carbonized from cane pith at 450 degrees C. The pore properties including the BET surface area, pore volume, pore size distribution, and mean pore diameter of these activated carbons were characterized and derived using the t-plot method based on N(2) adsorption isotherms. The activated cane pith carbons, with KOH/char ratios of 2-6, exhibited BET surface areas ranging from 912 to 2299 m(2) g(-1). The scanning electron microscopic (SEM) observations revealed that the surface morphology of honeycombed holes on all activated cane pith carbons was significantly influenced by the KOH/char ratio. The adsorption kinetics and equilibrium isotherms of acid blue 74, methylene blue, basic brown 1, p-nitrophenol, p-chlorophenol, p-cresol, and phenol from water at 30 degrees C on the activated carbons were studied. The adsorption kinetics were suitably described by a simplified kinetic model, the Elovich equation. All adsorption equilibrium isotherms were in agreement with the Langmuir equation, and were used to compare the covered area (S(c)/S(p)) of the activated carbons at different KOH/char ratios. The high-surface-area activated carbons were proven to be promising adsorbents for pollution control and for other applications.  相似文献   

3.
Two series of activated carbons were prepared from Spartina alterniflora and from its anaerobically digested residue by H(3)PO(4) activation at various process conditions, and used as adsorbents for the removal of cadmium (II) in aqueous solutions. The surface areas and pore volumes of carbons were derived from adsorption isotherms (N(2) at 77K). The surface chemistry of carbons was investigated by infrared spectroscopy. Comparison study indicated that physicochemical properties of the activated carbons were strongly dependent not only on activation conditions but also on biopolymer contents of precursors. Several isotherm models were investigated and the adsorption isotherm data were best represented by the Langmuir isotherm model, with a maximum monolayer adsorption capacity of 47.85 mg/g at 25 °C. The results showed that the activated carbon produced from S. alterniflora could be employed as a promising adsorbent for removing cadmium (II) from aqueous solutions.  相似文献   

4.
Porous carbons     
Satish M. Manocha 《Sadhana》2003,28(1-2):335-348
Carbon in dense as well as porous solid form is used in a variety of applications. Activated porous carbons are made through pyrolysis and activation of carbonaceous natural as well as synthetic precursors. Pyrolysed woods replicate the structure of original wood but as such possess very low surface areas and poor adsorption capacities. On activation, these exhibit increased adsorption volumes of 0.5-0.8 cm3/gm and surface areas of 700–1800 m2/gm depending on activation conditions, whether physical or chemical. Former carbons possess mixed pore size distribution while chemically activated carbons predominantly possess micropores. Thus, these carbons can be used for adsorption of wide distributions of molecules from gas to liquid. The molecular adsorption within the pores is due to single layer or multilayer molecule deposition at the pore walls and hence results in different types of adsorption isotherm. On the other hand, activated carbon fibres with controlled microporous structure and surface area in the range of 2500 m2/gm can be developed by controlled pyrolysis and physical activation of amorphous carbon fibres. Active carbon fibres with unmatchable pore structure and surface characteristics are present and futuristic porous materials for a number of applications from pollution control to energy storage.  相似文献   

5.
The preparation of activated carbons from bean pods waste by chemical (K(2)CO(3)) and physical (water vapor) activation was investigated. The carbon prepared by chemical activation presented a more developed porous structure (surface area 1580 m(2) g(-1) and pore volume 0.809 cm(3) g(-1)) than the one obtained by water vapor activation (258 m(2) g(-1) and 0.206 cm(3) g(-1)). These carbons were explored as adsorbents for the adsorption of naphthalene from water solutions at low concentration and room temperature and their properties are compared with those of commercial activated carbons. Naphthalene adsorption on the carbons obtained from agricultural waste was stronger than that of carbon adsorbents reported in the literature. This seems to be due to the presence of large amounts of basic groups on the bean-pod-based carbons. The adsorption capacity evaluated from Freundlich equation was found to depend on both the textural and chemical properties of the carbons. Naphthalene uptake on biomass-derived carbons was 300 and 85 mg g(-1) for the carbon prepared by chemical and physical activation, respectively. Moreover, when the uptake is normalized per unit area of adsorbent, the least porous carbon displays enhanced naphthalene removal. The results suggest an important role of the carbon composition including mineral matter in naphthalene retention. This issue remains under investigation.  相似文献   

6.
采用N2吸附、CO2吸附和热重红外联用等技术手段, 考察了在KOH活化稻壳炭的过程中碱炭比和活化温度对活性炭极微孔的影响。结果表明: 在不同碱炭比(0.6︰1~3︰1)和活化温度(640~780℃)下制备的稻壳活性炭, 极微孔主要分布在0.42~0.70 nm。当碱炭比增加时, 极微孔孔容先增大后减小; 而当活化温度升高时, 极微孔孔容呈降低趋势。极微孔率随碱炭比或活化温度的升高而单调递减。在活化温度为640℃、碱炭比为1: 1时, 可得极微孔孔容为0.149 mL/g、极微孔率达36.3%的微孔活性炭。活性炭的极微孔孔容与其在104 Pa时的CO2吸附量高度线性相关。  相似文献   

7.
A one-pot synthetic method was used for the preparation of nanoporous carbon containing nitrogen from polypyrrole (PPY) using NaOH as the activated agent. The activation process was carried out under set conditions (NaOH/PPY = 2 and NaOH/PPY = 4) at different temperatures in 600–900 °C for 2 h. The effect of the activation conditions on the pore structure, surface functional groups and CO2 adsorption capacities of the prepared N-doped activated carbons was examined. The carbon was analyzed by X-ray photoelectron spectroscopy (XPS), N2/77 K full isotherms, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The CO2 adsorption capacity of the N-doped activated carbon was measured at 298 K and 1 bar. By dissolving the activation agents, the N-doped activated carbon exhibited high specific surface areas (755–2169 m2 g−1) and high pore volumes (0.394–1.591 cm3 g−1). In addition, the N-doped activated carbons contained a high N content at lower activation temperatures (7.05 wt.%). The N-doped activated carbons showed a very high CO2 adsorption capacity of 177 mg g−1 at 298 K and 1 bar. The CO2 adsorption capacity was found to be dependent on the microporosity and N contents.  相似文献   

8.
以酚醛树脂为炭前驱体,KOH作活化剂,通过调节炭化温度在相同活化条件下制备了具有不同孔隙结构的活性炭材料.N_2吸附测试表明随着炭化温度降低,活性炭材料比表面积先增大后减小,孔容则不断增大.其中,550℃炭化样品与KOH反应活性最佳,可制得比表面积为2983m~2/g,总孔容为1.58cm~3/g,中孔孔容达到0.59cm~3/g的活性炭材料.采用直流充放电法、交流阻抗法和循环伏安法测定以上述多孔炭为电极材料的双电层电容器的电化学性能,结果表明,PF550活性炭材料电容性能最佳,在有机电解液中100mA/g充放电时,比电容达到160F/g,电流密度增大50倍容量保持率达到82%,显示出良好的功率特性;活性炭材料中存在一定比例的中孔不仅可以改善电极材料的功率特性,而且可以提高微孔的利用率.  相似文献   

9.
活性炭物理结构与其变压吸附分离瓦斯性能   总被引:1,自引:0,他引:1  
李建华 《材料导报》2011,25(24):73-76
活性炭(AC)在煤层瓦斯气体吸附分离上具有良好的应用前景。选用4种活性炭,利用77K氮气吸附表征了活性炭的物理性质。在自制的静态吸附装置上,测量了4种活性炭样品对瓦斯气(CH4/N2混合气体)在298K和318K时的平衡吸附量,结果发现4种活性炭对CH4/N2吸附能力有较大的差异。用Langmuir吸附方程关联实验数据,计算出4种活性炭在不同温度下对CH4/N2的分离因子。结合4种活性炭的物理性质以及其对CH4/N2的吸附量,分析了影响活性炭对CH4/N2的吸附量的因素。活性炭在变压吸附分离浓缩瓦斯时,应具备合适的孔径,比表面积和孔容越大越好。  相似文献   

10.
Walnut (Juglans regia) is a commonly used nutrient industrial crop but the shell of the walnut has no economic value. Hence to revamp the waste walnut shell biomass to useful product, activated carbon (AC) was prepared from J. regia shells by impregnating with NaOH. Different ACs were prepared by varying the impregnation ratio of char:NaOH as 1:1 (AC1), 1:3 (AC2), and 1:5 (AC3). The effect of impregnation ratios on the adsorptive properties of ACs for the adsorption of hexavalent chromium [Cr(VI)] was studied. The ACs were characterized by SEM, surface functionality, and zero point charge. Langmuir, Freundlich, Temkin, and Dubinin–Radushkevitch isotherm were used to interpret the batch equilibrium data. The adsorption of Cr(VI) onto ACs followed Langmuir isotherm model. Kinetic data followed pseudo second-order rate equation. Intraparticle diffusion model and Boyd plot were used to study the mechanism of the adsorption reaction. The adsorption was both by film diffusion and intraparticle diffusion. The rate-controlling step was predicted as external mass transfer. Thermodynamic parameters were also estimated. Overall, AC with higher impregnation ratio (AC3) possessed better adsorption properties compared to AC2 and AC1.  相似文献   

11.
以不同粒度范围的石油焦为原料,KOH为活化剂,采用化学活化工艺制备了超级电容器用活性炭电极材料.采用N2吸附法表征了活性炭材料的BET比表面积及孔结构;在1mol/L的Et4NBF4/AN有机电解液体系下组装成模拟电容器,并考察了活性炭材料的电化学性能.结果表明:随着原料粒度的减小,活性炭的振实密度和收率先增大,然后再减小.原料粒度范围越窄,活性炭具有越小的BET比表面积和孔容.在1mol/L的Et4NBF4/AN电解液体系下,随着石油焦粒度的不断减小,活性炭材料的质量比容量不断增大,在粒度<38μm时取得最大值140F/g.粒度为38~44μm的石油焦制备出的活性炭在1A/g电流下质量比容量为126.6F/g,在20A/g电流下质量比容量为116.2F/g,容量衰减只有8.2%,表现出良好的功率特性.  相似文献   

12.
煤基活性炭孔径分布的调控   总被引:6,自引:0,他引:6  
提出并研究了一种煤基活性炭孔径分布的调控方法及调控机理.将煤样与不同质量的KOH混合后炭化,分别对炭化料进行酸洗,以控制其中的钾含量,然后对酸洗料进行蒸汽活化,制成活性炭.通过对所制活性炭进行氮气吸附实验、扫描电镜及能谱分析和吸附能力表征实验后发现:改变KOH加入量和采用质量浓度为5%的盐酸对炭化料进行酸洗,能够改变炭化料中的钾含量;随着KOH含量的提高,活性炭的口发附能力逐渐增强,平均孔径从2.379 nm逐渐增大到2.636nm,同时孔径分布由以微孔为主逐渐向以中孔为主转移,其中孔含量由30.9%提高到46.1%.  相似文献   

13.
In this study, the surface coverage ratio (Sc/Sp) and monolayer cover adsorption amount per unit surface area (qmon/Sp) were employed to investigate the adsorption isotherm equilibrium of the adsorption of dyes (AB74, BB1 and MB) on NaOH-activated carbons (FWNa2, FWNa3 and FWNa4); the adsorption rate of the Elovich equation (1/b) and the ratio of 1min adsorption amount of adsorbate to the monolayer cover amount of adsorbate (q1/qmon) were employed to investigate adsorption kinetics. The qmon/Sp of NaOH-activated carbons was better than that of KOH-activated carbons prepared from the same raw material (fir wood). The Sc/Sp values of the adsorption of all adsorbates on adsorbent FWNa3 in this study were found to be higher than those in related literature. Parameters 1/b and q1 of the adsorption of dyes on activated carbons in this study were higher than those on KOH-activated carbons; the q1/qmon value of FWNa3 was the highest. The pore structure and the TPD measurement of the surface oxide groups were employed to explain the superior adsorption performance of FWNa3. A high surface activated carbon (FWNa3) with excellent adsorption performance on dyes with relation to adsorption isotherm equilibrium and kinetics was obtained in this study. Several adsorption data processing methods were employed to describe the adsorption performance.  相似文献   

14.
Activated carbon has been prepared from molasses, a natural precursor of vegetable origin resulting from the sugar industry in Morocco. The preparation of the activated carbon from the molasses has been carried out by impregnation of the precursor with sulphuric acid, followed by carbonisation at varying conditions (temperature and gas coverage) in order to optimize preparation parameters. The influence of activation conditions was investigated by determination of adsorption capacity of methylene blue and iodine, the BET surface area, and the pore volume of the activated carbon were determined while the micropore volume was determined by the Dubinin-Radushkevich (DR) equation. The activated materials are mainly microporous and reveal the type I isotherm of the Brunauer classification for nitrogen adsorption. The activated carbons properties in this study were found for activation of the mixture (molasses/sulphuric acid) in steam at 750 degrees C. The samples obtained in this condition were highly microporous, with high surface area (> or =1200 m2/g) and the maximum adsorption capacity of methylene blue and iodine were 435 and 1430 mg/g, respectively.  相似文献   

15.
不同结构活性炭对甲苯的吸附性能   总被引:2,自引:4,他引:2  
考察了不同结构的活性炭样品对高浓度和低浓度甲苯蒸汽的吸附行为,采用低温(77 K)氮气吸附和129Xe-核磁共振方法对所用活性炭的结构进行了表征.并将活性炭对甲苯的吸附性能与其结构进行了关联.结果表明孔容积大的活性炭对高浓度甲苯蒸汽吸附容量大,而具有丰富微孔和较小平均孔径的活性炭对低浓度(2×10-5)甲苯蒸汽具有高的吸附容量.沥青基活性炭纤维对低浓度(2×10-5)甲苯蒸汽表现出较好的吸附能力.随着比表面积的增大,活性炭纤维对低浓度(2×10-5)甲苯蒸汽的吸附容量略有增加.OG5A,OG10A,OG15A和OG20A在30 ℃下对2×10-5甲苯蒸汽的饱和吸附容量分别为202 mg/g,219 mg/g,221 mg/g和235 mg/g.  相似文献   

16.
微波加热烟杆制备微孔活性炭的研究   总被引:6,自引:0,他引:6  
研究了微波加热烟杆氯化锌活化法制备微孔活性炭的新工艺.采用正交试验研究了氯化锌浓度、浸渍时间、微波功率和活化时间对活性炭得率和吸附性能的影响.最佳工艺条件为ZnCl2浓度25%,浸渍时间36h,微波功率为700W,加热时间为16 min时,所制备的活性炭的碘吸附值为1059.32 mg/g,亚甲基蓝吸附值为21 mL/0.1g,得率为32.90 %.该工艺将常规加热方法的预热、干燥、炭化和活化简化为一个过程,所需要加热时间仅为传统方法的1/13,产品活性炭的亚甲基蓝吸附值为国家一级品标准的2.33倍.同时测定了该活性炭的氮吸附等温线,通过BET法计算了活性炭的比表面积,并通过H-K方程、D-A方程和密度函数理论(DFT)表征了活性炭的孔结构.结果表明:该活性炭为微孔型,BET比表面积为1214m2/g,总孔容为0.7387 mL/g,微孔占总孔容74.03%,中孔占24.54%,大孔占1.43%.  相似文献   

17.
In the present work, activated carbon (AC) with excellent Cr(VI) adsorption performance especially at low concentrations was prepared by an acid-base surface modification method. Raw activated carbon (AC(0)) was first oxidized in boiling HNO(3) (AC(1)), then treated with a mixture of NaOH and NaCl (AC(2)). Batch equilibrium and continuous column adsorption were conducted to evaluate the adsorption performance. Boehm titration, elemental analysis, and N(2)/77K adsorption isotherm methods were used to characterize the surface properties and pore structure of modified ACs. The results revealed that the modified AC exhibited excellent Cr(VI) adsorption performance in terms of adsorption capacity and adsorption rate: AC(2)>AC(1)>AC(0). Modification caused S(BET) to decrease and the total number of surface oxygen acidic groups to increase. HNO(3) oxidization produced positive acid groups, and subsequently NaOH treatment replaced H(+) of surface acid groups by Na(+), and the acidity of AC decreased. The main cause of higher Cr(VI) adsorption capacity and rate for AC(2) was the presence of more oxygen surface acidic groups and suitable surface acidity. HNO(3)-NaOH modification shows potential for the preparation of high quality AC for the effective removal of low concentrations of Cr(VI).  相似文献   

18.
Lignite was used to prepare activated carbon (T3K618) by chemical activation with KOH. Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by t-plot based on N2 adsorption isotherm. BET surface area of activated carbon is determined as 1000 m2/g. Adsorption capacity of malachite green (MG) onto T3K618 activated carbon was investigated in a batch system by considering the effects of various parameters like initial concentration (100, 150 and 200 mg/L) and temperature (25, 40 and 50 degrees C). The adsorption process was relatively fast and equilibrium was reached after about 20 min for 100, 150 mg/L at all adsorption temperature. Equilibrium time for 200 mg/L was determined as 20 min and 40 min at 298, 313 and 323 K, respectively. Simple mass and kinetic models were applied to the experimental data to examine the mechanisms of adsorption and potential rate controlling steps such as external mass transfer, intraparticle diffusion. Pseudo second-order model was found to explain the kinetics of MG adsorption most effectively. It was found that both mass transfer and pore diffusion are important in determining the adsorption rates. The intraparticle diffusion rate constant, external mass transfer coefficient, film and pore diffusion coefficient at various temperatures were evaluated. The activation energy (Ea) was determined as 48.56, 63.16, 67.93 kJ/mol for 100, 150, 200 mg/L, respectively. The Langmiur and Freundlich isotherm were used to describe the adsorption equilibrium studies at different temperatures. Langmiur isotherm shows better fit than Freundlich isotherm in the temperature range studied. The thermodynamic parameters, such as DeltaG degrees, DeltaS and DeltaH degrees were calculated. The thermodynamics of dyes-T3K618 system indicates endothermic process.  相似文献   

19.
以核桃壳为原料,经水热炭化-KOH活化制备活性炭,并将其用作超级电容器电极材料。采用低温氮气吸附、扫描电镜(SEM)及X射线光电子能谱(XPS)等手段系统研究核桃壳活性炭的微观结构及表面化学性质,并利用恒流充放电、循环伏安等探讨其对应电极材料的电化学性能。研究表明,在碱碳比为3∶1、活化温度为800℃、活化时间为1h的条件下,核桃壳水热炭经KOH活化可制备出比表面积为1 236m2/g、总孔容为0.804cm3/g、中孔比例为38.3%的活性炭。该核桃壳活性炭用作电极材料在KOH电解液中具有优异的电化学特性,其在50mA/g电流密度下的比电容可达251F/g,5 000mA/g电流密度下的比电容为205F/g,且具有良好的循环稳定性,1 000次循环后比电容保持率达92.4%,是一种比较理想的超级电容器电极材料。核桃壳活性炭优异的电化学性能与其相互贯通的层次孔结构和独特的含氧表面密切相关。  相似文献   

20.
An ordered mesoporous carbon. (OMC) synthesized by the soft-template method was activated by (a) CO2 at 900 degrees C for 4 h, (b) H2O at 800 degrees C for 20 min, and (c) H2O at 800 degrees C for 20 min followed by CO2 at 900 degrees C for 4 h to produce three micro-mesoporous carbons, A1, A2 and A3, respectively. Their pore structures were investigated by XRD, TEM, SEM and N-2 adsorption. Their electrochemical properties as the electrode materials of supercapacitors were investigated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. Results indicated that the highly ordered 2D hexagonal original mesostructure of the OMC was well retained after activation. The increasing order of the extent of activation is A1相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号