首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apatite-coated magnetite particles have been prepared using a novel biomimetic method. This method consisted of immersing magnetite particles in simulated body fluids (SBF, 1.5 SBF) along with disk-shaped sintered wollastonite. Different routes were followed: 7 days of immersion in SBF or 1.5 SBF and 7 or 28 days using a re-immersion method. The magnetic properties were evaluated both before and after the biomimetic process. A bone-like apatite layer was formed on all the samples tested and not a significant change was observed on their original magnetic behavior. These bioactive and superparamagnetic particles may be potential materials for bone cancer treatment.  相似文献   

2.
Highly porous Al2O3 scaffolds were prepared from natural cellulosic sponges via pyrolysis and Al-vapour phase infiltration. Subsequent oxidation and sintering in air resulted in porous Al2O3 ceramics with an open cellular morphology and a total porosity of 95%. The Al2O3-sponges were immersed in highly supersaturated simulated body fluid (5 × SBF) solutions with different Mg2+ and HCO3− concentrations. After soaking of the porous Al2O3 sponges for 4 days a homogeneous calcium phosphate layer with a thickness of approximately 2 μm and a Ca : P ratio of 1.62 (apatite) was found.  相似文献   

3.
4.
We have already reported that the apatite coating of titanium by the blast coating (BC) method could show a higher rate of bone contact from the early stages in vivo, when compared to the pure titanium (Ti) and the apatite coating of titanium by the flame spraying (FS) method. However, the detailed mechanism by which BC resulted in satisfactory bone contact is still unknown. In the present study, we investigated the importance of various factors including cell adhesion factor in osteoblast proliferation and differentiation that could affect the osteoconductivity of the BC disks. Cell proliferation assay revealed that Saos-2 could grow fastest on BC disks, and that a spectrophotometric method using a LabAssayTM ALP kit showed that ALP activity was increased in cells on BC disks compared to Ti disks and FS disks. In addition, higher expression of E-cadherin and Fibronectin was observed in cells on BC disks than Ti disks and FS disks by relative qPCR as well as Western blotting. These results suggested that the expression of cell-adhesion factors, proliferation and differentiation of osteoblast might be enhanced on BC disks, which might result higher osteoconductivity.  相似文献   

5.
Parathyroid hormone (PTH) is a well-known therapeutic agent for osteoporosis treatment, however, the inconvenience of daily administration and side effect from systematic administration severely limits its application in clinic. PTH has been incorporated into a biomimetic calcium phosphate (CaP) coating via a co-precipitation method in a modified simulated body fluid. The aim of the current study is to evaluate the osseointegration response of PTH incorporated CaP coating on titanium implants. Implants with different doses of PTH were inserted into tibiae of mice and evaluated by X-ray, micro-CT, histology and back-scattered scanning electron microscopy. Improved osseointegration of the implants loaded with PTH was observed compared to CaP coating only after 28?days of implantation in mouse tibiae. Micro-CT analysis showed better bone integration around the implant incorporated with PTH. Bone area and bone contact evaluations have demonstrated that peri-implant bone regeneration is highly dependent on the dosage of PTH incorporated. The higher the PTH content, the more bone formed surrounding the implant. Therefore, our results suggest that biomimetic CaP coating could be a useful a carrier for PTH local delivery, which results in improved bone-to-implant integration.  相似文献   

6.
In the present study, porous titanium with three-dimensionally interconnected pores and a porosity of 74.3 ± 3.8% was made by a slurry foaming method. After being pretreated with acid–alkali or alkali–heat method and then immersed into a supersaturated calcium phosphate solution to form a biomimetic apatite coating on the surface, the porous titanium samples were hemi-transcortically implanted into the femurs of dogs for two months. The experimental results showed that the surface apatite coatings deposited on acid–alkali and alkali–heat treated porous titanium had different morphology and thickness. However, histological and histomorphometric analysis confirmed that both types of apatite-coated implants had excellent osteointegration with host bone, and their osteoconduction had also no significant difference. This study proved that both acid–alkali and alkali–heat treatments might have the same efficiency in activating porous titanium, and the apatite-coated porous titanium could be potential to be used in clinic.  相似文献   

7.
Petal-like apatite/titania (TiO2) coating was prepared on commercially pure titanium (Ti) by micro-arc oxidation in electrolyte containing calcium and phosphate for the first time. The surface morphology, crystalline structure, chemical composition and binding state of the apatite/TiO2 composite coating were characterized. The coating consists of a double-layer (apatite layer and TiO2 layer) structure. The average thickness of the inner TiO2 layer and the outer apatite layer is about 6 μm and 16 μm respectively. The outer apatite layer is porous and exhibits petal-like pattern. The apatite layer consists of hydroxyapatite (HA) and carbonate-apatite and the inner TiO2 layer consists of anatase and rutile.  相似文献   

8.
In the apatite coatings on Ti the heat treatment process is necessary to crystallize the apatite structure for improved chemical stability and biological properties. However, the heat treatment normally degrades the mechanical strength of the coating layer associated with thermally induced stress. In this study, we aimed to improve the crystallization of apatite coating by using calcium fluoride (CaF2) as a buffer layer. The insertion of a thin layer of CaF2 (0.2–1 μm) between apatite and Ti significantly improved the crystallization behavior of apatite. Moreover, this crystallization was more enhanced as the thickness of CaF2 was increased. When a 1 μm-thick CaF2 was inserted, the crystallization of apatite initiated at a temperature as low as 320 °C, being a dramatic improvement in the crystallization when considering the crystallization initiation temperature of a bare apatite coating on Ti was ∼450 °C. As a result of this crystallization enhancement, the dissolution behavior of CaF2-inserted apatite coatings was more stable than that of the bare apatite coating, showing much reduced initial-burst effect. Preliminary cellular assay showed the CaF2-inserted apatite coating provided a substrate for cells to spread and grow favorably, as being similar to the bare apatite coating. This novel way of apatite coating on Ti using CaF2 buffer layer may be useful in the coating systems particularly requiring low temperature processing and increased crystallinity with high chemical stability.  相似文献   

9.
The influence of thin carbonate-containing apatite (CA) coating on trabecular bone response to cylindrical titanium fiber mesh (porosity of 85%, pore size of 200–300 μm, 2.8 mm diameter × 6 mm length) implants was investigated. Thin CA coatings were deposited by the so-called molecular precursor method. Molecular precursor solution was obtained by adding dibutylammonium diphosphate salt to Ca–EDTA/amine ethanol solution by adjusting Ca/P = 1.67. Sintered cylindrical titanium fiber mesh was immersed into molecular precursor solution and then tempered at 600 °C for 2 h. The immersion and tempering process was repeated three times. An adherent thin CA film could be deposited on the inside of titanium fiber mesh. After the immersion of a CA-coated titanium fiber mesh in simulated body fluid, apatite crystals precipitated on the titanium fiber mesh. Uncoated and CA-coated titanium fiber mesh was inserted into the trabecular bone of the left and right femoral condyles of rabbits. Histological and histomorphometrical evaluation revealed a significantly greater amount of bone formation inside the porous area of the CA-coated titanium fiber mesh after 12 weeks of implantation. The present results suggested that a thin CA-coated titanium mesh has better osteoconductivity and will be useful for a three-dimensional scaffold.  相似文献   

10.
Plasma electrolytic oxidation (PEO) was used to make a multifunctional porous titanium oxide (TiO2) coating on a titanium substrate. The key finding of this study is that a highly crystalline TiO2 coating can be made by performing the PEO in an ammonium acetate (CH3COONH4) solution; the PEO coating was formed by alternating between rapid heating by spark discharges and quenching in the solution. The high crystallinity of the TiO2 led to the surface having multiple functions, including apatite forming ability and photocatalytic activity. Hydroxyapatite formed on the PEO coating when it was soaked in simulated body fluid. The good apatite forming ability can be attributed to the high density of hydroxyl groups on the anatase and rutile phases in the coating. The degradation of methylene blue under ultraviolet radiation indicated that the coating had high photocatalytic activity.  相似文献   

11.
To improve bioactivity and long-term biocompatibility of NiTi shape memory alloys (SMAs), apatite and apatite/collagen composite coatings were formed at 37 °C on the metal through electrochemical deposition using double-strength simulated body fluid (2SBF) without and with dissolved collagen, respectively. Surface characteristics, wettability and chemical stability of the coatings were subsequently studied and comparisons were made between the apatite coating and apatite/collagen composite coatings. Surface morphology of the apatite/collagen coating revealed that many collagen fibers were embedded in apatite with flake-like structures. The phase composition and chemical composition analyses showed that calcium-deficient and carbonated hydroxyapatite with low crystallinity was formed in the apatite and apatite/collagen coatings. Moreover, the wettability of uncoated and coated NiTi SMA samples was investigated. Compared to both uncoated and apatite-coated NiTi SMA samples, apatite/collagen-coated samples were more chemically stable and exhibited higher corrosion resistance.  相似文献   

12.
粉末涂料的新发展   总被引:4,自引:0,他引:4  
介绍了近年来国外粉末涂料的新开发动向及部分新产品 ,并对我国开发“绿色涂料”提出了一些看法和建议  相似文献   

13.
This study describes biomimetic calcium phosphate (Ca-P) coatings formation under simulated physiological conditions on Ti surfaces that go through nitric acid treatment (NT). In the present study, nitric acid treatment was used to treat Ti specimens so that Ti specimens could have the ability to induce Ca-P formation. After careful selection of the NT parameters, Ca-P coatings success fully formed on the nitric-acid-treated Ti surfaces in a supersaturated calcium phosphate solution (SCPS) and in the simulated body fluid (SBF). Before NT, the Ti specimen should go through mixed acid etching to increase its surface roughness because rough surfaces lead to good adherence between coatings and substrates. Amorphous Ca-P coatings were formed on the Ti surfaces by immersing the NT Ti specimens in SBF, while octacalcium phosphate (OCP) coatings were formed in the SCPS after 3 days of immersion. The study firstly proved that nitric acid treatment is not only just for surface passivation but also is another bioactive treatment as an alternative to the alkaline treatment and two-step method. The experimental results also confirmed that the conventional nitric acid treatment of a titanium surface does not increase the titanium oxide on the Ti surfaces. However, extending the nitric acid treatment time and enhancing the nitric acid treatment temperature help to increase Ti surface ability of Ca-P induction in simulated physiological environments. Ti specimens that had 600 min of NT at 60 °C had the best Ca-P induction ability under biomimetic conditions.  相似文献   

14.
15.
Titanium and titanium alloys for implants have been widely applied to the orthopaedic and dental fields, due to their excellent corrosion resistance, good mechanical properties and biocompatibility. However, the near bioinert and metallic ions release are still the major problems in the clinical failure. For these reasons, modification of biomaterials surface properties, which support bioactivity and corrosion resistance, should be one of the key objectives in the design of the next generation of orthopaedic/dental implants. Cathodic electrolytic deposition of anatase TiO2 coating has been successfully deposited on pure titanium substrate. After annealed at 300 °C for 1 h, the coating were further condensed into anatase TiO2, and gradually transformed into rutile TiO2 at 500 °C. The dynamic cyclic polarization tests indicated that dense and nanocrystalline anatase TiO2 coated effectively improved corrosion resistance to avoid aggression of fluoride ion. For immersion tests, the matching structure of anatase TiO2 and apatite may play an important role in the apatite formation ability. Moreover, the cell culture results also indicated that nanocrystalline anatase TiO2 not only promoted cells differentiation, but also appeared more bioactive while maintaining non-toxicity. Obviously, the materials characteristics such as crystal structure, surface morphology and corrosion resistance may play an important role in the osteointegration.  相似文献   

16.
A biodegradable polymer coated with a bonelike apatite layer on its surface would be useful as a scaffold for bone tissue regeneration. In this study, poly(l-lactic acid) (PLLA) was treated with oxygen plasma to produce oxygen-containing functional groups on its surface. The plasma-treated specimen was then alternately dipped in aqueous CaCl2 and K2HPO4·3H2O solutions three times, to deposit apatite precursors onto the surface. The surface-modified specimen then successfully formed a dense and uniform bonelike surface apatite layer after immersion for 24 h in a simulated body fluid with ion concentrations approximately equal to those of human blood plasma. The adhesive strength between the apatite layer and the specimen surface increased as the power density of the oxygen plasma used increased. The maximum adhesive strength of the apatite layer to the specimen was significantly higher than that to the commercially available artificial bone, HAPEXTM. The resultant bonelike apatite–PLLA composite would be useful as a scaffold for bone tissue regeneration.  相似文献   

17.
通过仿生法在硅橡胶表面制备磷灰石薄膜的研究   总被引:2,自引:0,他引:2  
韦明  王欣宇  王友法  安江峰  焦国豪  杨艾玲 《功能材料》2007,38(7):1187-1189,1193
用CaCl2的乙醇溶液和K2HPO4溶液对硅橡胶进行预处理,将处理过的硅橡胶分别浸渍于模拟体液和钙磷饱和溶液中来制备磷灰石薄膜.利用薄膜X射线衍射、红外吸收光谱和扫描电子显微镜对形成的薄膜进行了表征.结果表明,分别在模拟体液中7d和在钙磷饱和溶液中5d后,硅橡胶表面形成了一层磷灰石薄膜;在模拟体液中的薄膜表面呈网状并分布有许多球状晶粒,在钙磷饱和溶液中的薄膜为结晶良好的片状晶体.  相似文献   

18.
Abstract

A ceramic coating was formed on the titanium alloy by microarc oxidation in an electrolyte containing nano-Fe2O3, emulsifier OP-10 and sodium phosphate. The composition, surface and cross-sectional morphology and the element compositions of the coatings were characterised by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis system. The spectral emissivity of the coatings was measured by a Fourier transform spectrometer apparatus. The bonding strength between the coating and the titanium alloy was studied by tensile strength test. The thermal shock resistance of the coatings was also evaluated. The results showed that nano-Fe2O3 was incorporated into the coating, and the coating had high emission at the wavelength range of 3–20 μm. The bonding strength was 33·2 MPa, and after being subjected to severe thermal shocking for 50 cycles, little peeling-off of the coating occurred.  相似文献   

19.
主要介绍了聚苯硫醚粉末涂料的特性、国内外研究现状和静电粉末喷涂技术,阐述了流变学在聚苯硫醚粉末涂料成膜过程中的应用,并对聚苯硫醚粉末涂料的发展前景进行了展望.  相似文献   

20.
使用哈特曼管,对5种粒径的钛粉进行最小点火能(E_(min))实验;选取喷尘压力(p)、紊流指数(t_v)处于敏感值的数据拟合出钛粉点火能量(E_i)受质量浓度和粒径影响变化的函数,以及敏感质量浓度受粒径影响变化的函数。结果表明:中位粒径为18、25、38、48、74μm的钛粉对应的敏感质量浓度分别为700、750、800、800、850 g/m~3,最小点火能分别为33.2、38.1、41.3、44.3、67.4 m J;点火能量随质量浓度的增大以二次函数的形式先减后增,随粒径的增大以二次函数的形式增大;敏感质量浓度与钛粉粒径呈正相关;紊流指数敏感值与喷尘压力呈负相关;喷尘压力不变,粒径越大,紊流指数敏感值越大;紊流指数不变,钛粉粒径越大,喷尘压力敏感值越大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号