共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
基于K-中心点聚类的模糊航迹关联算法 总被引:1,自引:0,他引:1
为提高目标航迹相交和近距平行状态时航迹关联的正确率,提出了一种基于K-中心点聚类的模糊航迹关联算法。该算法基于K-中心点聚类算法,将系统航迹作为聚类中心,采用局部航迹与系统航迹关联的策略,为描述航迹间的相似性,采用模糊分析方法,综合考虑各个因素的影响,构造模糊关联矩阵,并利用历史信息和先验知识进行航迹关联。仿真表明该算法在航迹相交状态下,相交时刻关联正确率比K-medoids聚类算法提高5%左右,近距平行状态下关联正确率的收敛速度优于K-medoids聚类算法。 相似文献
3.
4.
5.
多源航迹融合一直是信息融合领域的研究热点。在对最近邻数据关联算法的研究基础上,提出一种新的"筒状"最近邻数据关联算法,对该算法进行仿真分析,与最近邻数据关联算法相比,新算法在密集环境下关联性能明显更优,易于工程实现。 相似文献
6.
在分布式数据融合系统中,局部探测航迹在融合中心进行航迹关联后,需分配综合批号以确定局部航迹与系统航迹的对应关系,以便后续的融合处理。实际应用中,因关联错误的存在,可能导致后续自动编批算法的失效,进而造成系统航迹断续等故障。提出了一种基于渴望度的关联航迹自动编批算法,在航迹关联与航迹融合之间,根据渴望度为局部航迹分配综合批号,以实现关联航迹与系统航迹的对应。在真实反映关联关系的前提下,还可确保在有限关联错误下系统航迹批号的稳定性,使某一批号在不同时间尽可能地代表同一目标。所提出的算法已在实际的工程系统中得到应用,具有较好的稳健性。 相似文献
7.
多传感器多目标跟踪广泛应用于军事和民用监视系统。数据关联和滤波技术是多目标多传感器跟踪监视系统的主要组成部分。近年来,人们开始研究模糊数据关联方法,取得了较好的效果。本文针对基于模糊聚类均值算法的数据关联方法中的一些问题,提出了一些改进的想法,仿真结果说明了其有效性。 相似文献
8.
9.
针对信息检索中查询关键词与文档用词不匹配的问题,提出一种基于关联规则与聚类算法的查询扩展算法。该算法在第1阶段对初始查询结果的前N篇文档进行关联规则挖掘,提取含有初始查询项的关联规则构建规则库,并从中选取与查询用词关联度最大的置个词作为扩展词,与初始查询组成新查询后再次查询,在第2阶段将新查询结果进行聚类分析并计算结果中每篇文档的最终相关度,按最终相关度大小重新排序。实验结果表明,该算法比单独使用关联规则算法或是单独使用聚类算法均有更优的检索性能。 相似文献
10.
聚类个数的确定是聚类分析中一个富有挑战性的难题。现有的聚类个数确定方法主要采用随机选取初始聚类中心的策略,导致聚类过程中迭代次数的稳定性不强。基于此,在利用含有类标签的先验信息优化初始类中心的基础上,提出了一种基于先验信息的混合数据聚类个数确定算法。实验证明,该算法是有效的。 相似文献
11.
针对传统的航迹关联算法在运动目标交叉、分岔时,常出现错漏相关航迹且计算量随着传感器和目标数量增加而飞速增长的缺陷,提出一种改进的Kohonen神经网络航迹关联算法。该算法由聚类关联、目标状态估计、神经元优化和状态融合估计等模块组成。通过给每个竞争层神经元加上一个合适的阈值,有效避免了常规的Kohonen神经网络因初始权值选择不合适而容易造成坏死神经元的问题。进一步设计了自组织竞争神经网络学习规则,将多传感器在同一时刻的测量数据进行自组织聚类,从而实现测量数据的有效关联。最后,利用连续时间下的关联数据,实现运动目标航迹关联。仿真研究验证了该算法的可行性和有效性。 相似文献
12.
针对因特网环境下并行数据库实现多个大数据表关联存在的计算瓶颈,基于Hadoop集群设计了一个并行关联多个大数据表的简便算法MR_Join。以商业网站凡客诚品的销售数据为例进行实验,验证算法的可行性并做出应用实例。实验结果表明,MR_Join算法可以有效地实现大数据表的快速关联,具有显著的并行效率。 相似文献
13.
为了在知识约简中能够客观地反映决策规则的决策能力,提高约简的效率和识别率,针对动态知识获取这一问题,提出了一种基于决策熵的增量式知识获取算法。该方法利用决策熵能够客观地衡量决策表的决策能力的特点,在现有规则集基础上实现知识的动态更新,避免了重复计算从而提高了知识获取的识别率和效率。最后通过实验说明了该方法的有效性。 相似文献
14.
粗糙集理论认为知识就是分类。对知识的分类能力给予了量化,提出利用知识的划分粒度来定量地表示知识的分类能力。首先建立了知识与其划分粒度间的关系;其次,基于划分粒度定义了属性的重要性,并以此为启发式信息设计了一个信息系统的约简算法;最后通过实例表明,该算法是高效的。 相似文献
15.
利用基于块匹配(PatchMatch)图像修复算法对破损区域较大且周围既含有几何结构信息又含有丰富纹理信息的图片进行修复时,容易出现纹理延伸现象以及样本块误匹配问题。针对此类问题,在样本块的精确匹配和算法的时效性两个方面进行改进,提出新的图像修复算法。在样本块精确匹配方面,改进算法对图像进行预处理以获得图像的先验信息,并利用先验信息约束算法偏移映射图的初始化,从而转变PatchMatch算法中对图像偏移映射图的全局随机初始化为在先验信息指导下的约束初始化;在像素块匹配过程中,利用均值法和夹角法来判断不同类别像素块的相似度,从而提高样本块的匹配精度。在算法的时效性方面,根据图像相似块的统计性特性,引入直方图统计的方法来减少最终用于修复的样本标签,提高改进算法的时效性。最后,将改进算法用于实例验证,相比原算法,改进算法的运行时间减少了5~10 s,峰值信噪比(PSNR)提高了0.5~1 dB。实例验证结果表明改进算法不但可以有效地提高图像修复的精度,而且提高了图像修复的效率。 相似文献
16.
为解决在典型相关滤波框架模型中样本信息判别性低引起的跟踪漂移问题,提出一种利用空间结构信息的相关滤波目标跟踪算法。首先,引入空间上下文结构约束进行模型构建的优化,同时利用正则化最小二乘与矩阵分解思想实现闭式求解;然后,采用互补特征用于目标表观描述,并利用尺度因子池处理目标尺度变化情况;最后,借助目标运动连续性进行目标受遮挡影响情况的判定,设计相应的模型更新策略。实验结果表明,在多种典型测试场景中所提算法的准确率较传统算法提高了17.63%,成功率提高了24.93%,可以取得较为鲁棒的跟踪效果。 相似文献
17.
18.
A clustering algorithm based on energy information and cluster heads expectation for wireless sensor networks 总被引:2,自引:0,他引:2
Aimin WangAuthor Vitae Dailiang YangAuthor Vitae Dayang SunAuthor Vitae 《Computers & Electrical Engineering》2012,38(3):662-671
A new method is proposed in this paper to improve Low Energy Adaptive Clustering Hierarchy (LEACH) by electing cluster heads according to the residual energy of the nodes dynamically. A sliding window is set up to adjust the electing probability and keep stable the expected number of the cluster heads using two parameters in this method, one is the initial energy information of the nodes and the other is the average energy information of those that have not already been cluster heads in the network. Meanwhile, the number of cluster heads which is fixed in the entire network lifetime in LEACH is modified to be a variable according to the number of the living nodes. Simulations show that the improvement for First Node Dies (FND) and Half of the Nodes Alive (HNA) is 41% and 36%, respectively over LEACH, 17% and 26% for Low Energy Adaptive Clustering Hierarchy with Deterministic Cluster-Head Selection (LEACH-DCHS), 22% and 21% for Advanced Low Energy Adaptive Clustering Hierarchy (ALEACH). 相似文献
19.
基于遗传算法和遗传模糊聚类的混合聚类算法 总被引:2,自引:1,他引:2
为了动态确定聚类数目C和该数目下的最优分类,构造出遗传算法和模糊遗传C均值聚类的混合聚类算法(HGA-FGCM),该方法构造了一个既考虑类与类之间的分散程度,又考虑同一类紧凑程度的目标评价函数;运用遗传算法的全局寻优能力,求得最佳聚类数下的最优聚类。 相似文献