首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Crystal structures of human hexokinase I reveal identical binding sites for phosphate and the 6-phosphoryl group of glucose 6-phosphate in proximity to Gly87, Ser88, Thr232, and Ser415, a binding site for the pyranose moiety of glucose 6-phosphate in proximity to Asp84, Asp413, and Ser449, and a single salt link involving Arg801 between the N- and C-terminal halves. Purified wild-type and mutant enzymes (Asp84 --> Ala, Gly87 --> Tyr, Ser88 --> Ala, Thr232 --> Ala, Asp413 --> Ala, Ser415 --> Ala, Ser449 --> Ala, and Arg801 --> Ala) were studied by kinetics and circular dichroism spectroscopy. All eight mutant hexokinases have kcat and Km values for substrates similar to those of wild-type hexokinase I. Inhibition of wild-type enzyme by 1,5-anhydroglucitol 6-phosphate is consistent with a high affinity binding site (Ki = 50 microM) and a second, low affinity binding site (Kii = 0.7 mM). The mutations of Asp84, Gly87, and Thr232 listed above eliminate inhibition because of the low affinity site, but none of the eight mutations influence Ki of the high affinity site. Relief of 1,5-anhydroglucitol 6-phosphate inhibition by phosphate for Asp84 --> Ala, Ser88 --> Ala, Ser415 --> Ala, Ser449 --> Ala and Arg801 --> Ala mutant enzymes is substantially less than that of wild-type hexokinase and completely absent in the Gly87 --> Tyr and Thr232 --> Ala mutants. The results support several conclusions. (i) The phosphate regulatory site is at the N-terminal domain as identified in crystal structures. (ii) The glucose 6-phosphate binding site at the N-terminal domain is a low affinity site and not the high affinity site associated with potent product inhibition. (iii) Arg801 participates in the regulatory mechanism of hexokinase I.  相似文献   

2.
When tested in the presence of an inhibitor of sorbitol dehydrogenase, both mannitol and sorbitol caused a progressive inhibition of the detritiation of [2-3H]glucose in isolated rat hepatocytes. The purpose of the present work was to investigate the possibility that this effect was mediated by the regulatory protein of glucokinase. When added to hepatocytes, mannitol decreased the apparent affinity of glucokinase for glucose and increased the concentration of fructose required to stimulate detritiation, without affecting the concentration of fructose 1-phosphate. Its effect could be attributed to the formation of mannitol 1-phosphate, a potent agonist of the regulatory protein, which, similarly to fructose 6-phosphate, reinforces its inhibitory action. Formation of mannitol 1-phosphate in hepatocytes was dependent on the presence of mannitol and was stimulated by compounds that increase the concentration of glucose 6-phosphate. Liver extracts catalysed the conversion of mannitol to mannitol 1-phosphate about 7 times more rapidly in the presence of glucose 6-phosphate than of ATP. The glucose 6-phosphate-dependent formation was entirely accounted for by a microsomal enzyme, glucose-6-phosphatase and was not due to a loss of latency of this enzyme. In hepatocytes in primary culture, mannitol decreased the detritiation rate and counteracted the effect of fructose to stimulate glucokinase translocation. Taken together, these results strongly support a central role played by the regulatory protein in the control of glucokinase activity and translocation in the liver, as well as a feedback control exerted by fructose 6-phosphate on this enzyme.  相似文献   

3.
Asn41, Thr42, and Thr46 are invariant residues in both muscle and erythrocyte acylphosphatases isolated so far. Horse muscle acylphosphatase solution structure suggests their close spatial relationship to Arg23, the main substrate binding site. The catalytic and structural role of such residues, as well as their influence on muscle acylphosphatase stability, was investigated by preparing several gene mutants (Thr42Ala, Thr46Ala, Asn41Ala, Asn41Ser, and Asn41Gln) by oligonucleotide-directed mutagenesis. The mutated genes were cloned and expressed in Escherichia coli, and the mutant enzymes were purified by affinity chromatography and investigated as compared to the wild-type enzyme. The specific activity and substrate affinity of Thr42 and Thr46 mutants were not significantly affected. On the contrary, Asn41 mutants showed a residual negligible activity (about 0.05-0.15% as compared to wild-type enzyme), though maintaining an unchanged binding capability of both substrate and inorganic phosphate, an enzyme competitive inhibitor. According to the 1H nuclear magnetic resonance spectroscopy and circular dichroism results, all mutants elicited well-constrained native-like secondary and tertiary structures. Thermodynamic parameters, as calculated from circular dichroism data, demonstrated a significantly decreased stability of the Thr42 mutant under increasing temperatures and urea concentrations. The reported results strongly support a direct participation of Asn41 to the enzyme catalytic mechanism, indicating that Asn41 mutants may well represent a useful tool for the investigation of the enzyme physiological function by the negative dominant approach.  相似文献   

4.
The structural transformation of fructose-1,6-bisphosphatase upon binding of the allosteric regulator AMP dramatically changes the interactions across the C1-C4 (C2-C3) subunit interface of the enzyme. Asn9, Met18, and Ser87 residues were modified by site-directed mutagenesis to probe the function of the interface residues in porcine liver fructose-1,6-bisphosphatase. The wild-type and mutant forms of the enzyme were purified to homogeneity and characterized by initial rate kinetics and circular dichroism (CD) spectrometry. No discernible alterations in structure were observed among the wild-type and Asn9Asp, Met18Ile, Met18Arg, and Ser87Ala mutant forms of the enzyme as measured by CD spectrometry. Kinetic analyses revealed 1.6- and 1.8-fold increases in kcat with Met18Arg and Asn9Asp, respectively. The K(m) for fructose 1,6-bisphosphate increased about 2-approximately 4-fold relative to that of the wild-type enzyme in the four mutants. A 50-fold lower Ka value for Mg2+ compared with that of the wild-type enzyme was obtained for Met18Ile with no alteration of the Ki for AMP. However, the replacement of Met18 with Arg caused a dramatic decrease in AMP affinity (20 000-fold) without a change in Mg2+ affinity. Increases of 6- and 2-fold in the Ki values for AMP were found with Asn9Asp and Ser87Ala, respectively. There was no difference in the cooperativity for AMP inhibition between the wild-type and the mutant forms of fructose-1,6-bisphosphatase. This study demonstrates that the mutation of residues in the C1-C4 (C2-C3) interface of fructose-1,6-bisphosphatase can significantly affect the affinity for Mg2+, which is presumably bound 30 A away. Moreover the mutations alternatively reduce AMP and Mg2+ affinities, and this finding may be associated with the destabilization of the corresponding allosteric states of the enzyme. The kinetics and structural modeling studies of the interface residues provide new insights into the conformational equilibrium of fructose-1,6-bisphosphatase.  相似文献   

5.
The ligand binding site of neuropeptide Y (NPY) at the rat Y1 (rY1,) receptor was investigated by construction of mutant receptors and [3H]NPY binding studies. Expression levels of mutant receptors that did not bind [3H]NPY were examined by an immunological method. The single mutations Asp85Asn, Asp85Ala, Asp85Glu and Asp103Ala completely abolished [3H]NPY binding without impairing the membrane expression. The single mutation Asp286Ala completely abolished [3H]NPY binding. Similarly, the double mutation Leu34Arg/Asp199Ala totally abrogated the binding of [3H]NPY, whereas the single mutations Leu34Arg and Asp199Ala decreased the binding of [3H]NPY 2.7- and 5.2-fold, respectively. The mutants Leu34Glu, Pro35His as well as Asp193Ala only slightly affected [3H]NPY binding. A receptor with a deletion of the segment Asn2-Glu20 or with simultaneous mutations of the three putative N-terminal glycosylation sites, displayed no detectable [3H]NPY binding, due to abolished expression of the receptor at the cell surface. Taken together, these results suggest that amino acids in the N-terminal part as well as in the first and second extracellular loops are important for binding of NPY, and that Asp85 in transmembrane helix 2 is pivotal to a proper functioning of the receptor. Moreover, these studies suggest that the putative glycosylation sites in the N-terminal part are crucial for correct expression of the rY1 receptor at the cell surface.  相似文献   

6.
Previous kinetic studies on human glutathione transferase P1-1 have indicated that the motions of an irregular alpha-helix (helix 2) lining the glutathione (GSH) binding site are viscosity dependent and may modulate the affinity of GSH binding. The effect of single amino acid residue substitutions (Gly to Ala) in this region is investigated here by site-directed mutagenesis. Three mutants (Gly41Ala, Gly50Ala and Gly41Ala/Gly50Ala) were overexpressed in Escherichia coli, purified, and characterized by kinetic, structural, and spectroscopic studies. All these mutant enzymes show kcat values similar to that of the wild-type enzyme, while the [S]0.5 for GSH increases about eight-fold in the Gly41Ala mutant and more than 100-fold in the Gly41Ala/Gly50Ala double mutant. This change in affinity towards GSH is accompanied by an induced positive cooperativity as reflected by Hill coefficients of 1.4 (Gly41Ala) and 1.7 (Gly41Ala/Gly50Ala) upon substrate binding. Taken together, these data suggest that the region around helix 2 is markedly altered leading to the observed intersubunit communication. Molecular modeling of the Gly41Ala/Gly50Ala mutant and of the inactive oxidized form of the native enzyme provides a structural explanation of our results.  相似文献   

7.
The role of putative extracellular sequences for ligand binding in the TRH receptor was examined using deletion or substitution mutations. Each mutant receptor was transiently expressed in TRH receptor-minus GH(1)2C(1)b rat pituitary cells, and binding of 4 Nu Mu [3H]pGlu-N(tau)-MeHis-Pro-NH2 ([3H] MeTRH) was measured. When binding was not detected, signal transduction at 10 microM MeTRH was measured to assess receptor expression. Deletion of most of the N-terminal sequences (Glu(2)-Leu(22)), including two potential glycosylation sites, had no effect on the affinity of the receptor for MeTRH. Segmental deletions or simultaneous substitution of multiple amino acid residues in the first, second, or third extracellular loop (EL1, EL2, or EL3) resulted, however, in total loss of [3H]MeTRH binding, suggesting important roles for the loop sequences in either receptor expression or ligand binding. Individual substitutions were made to test further the role of the specific extracellular loop sequences in TRH binding. In EL1, conversion of Tyr93 to Ala resulted in more than 20-fold decrease in affinity for MeTRH. In EL2 and the top portion of the fifth transmembrane helix, conversion of Tyr181 to Phe, Tyr188 to Ala, and Phe199 to Ala resulted in a large ( > 100-fold) decrease in affinity for MeTRH, and conversion of Tyr 188 to Phe and Phe196 to Ala caused an agonist-specific 4- to 5-fold decrease in affinity. In EL3, conversion of Asn289 to Ala and of Ser290 to Ala caused a large ( > 100-fold) decrease in affinity for MeTRH. These results suggest important roles for the extracellular loops in high affinity TRH binding and lead us to propose a model in which TRH binds to the extra-cellular domain of its receptor.  相似文献   

8.
Functional characterization of a unique liver gene promoter   总被引:1,自引:0,他引:1  
  相似文献   

9.
The nonselective human corticotropin-releasing factor receptor 1 (hCRF-R1) and the ligand-selective Xenopus CRF-R1 (xCRF-R1) were compared. To understand the interactions of sauvagine and ovine CRF, both high-affinity ligands for hCRF-R1 but surprisingly weak ligands for xCRF-R1, chimeric receptors of hCRF-R1 and xCRF-R1 followed by double or multiple point mutations were constructed. Binding studies and cAMP assays demonstrated that the N-terminal domain exhibited the complete ligand selectivity of xCRF-R1. The important region was mapped between amino acids 70 and 89; replacement of amino acids Arg76, Asn81, Gly83, Leu88, and Ala89 in hCRF-R1 with the corresponding amino acids of xCRF-R1 (Gln76, Gly81, Val83, His88, and Leu89) resulted in a receptor that had approximately 30-fold higher affinity for human/rat CRF than for sauvagine. Mutagenesis of these amino acids in xCRF-R1 to the human sequence completely abolished the ligand selectivity of xCRF-R1. Mutagenesis of amino acids 88 and 89 in hCRF-R1 or xCRF-R1 had only a minor (approximately 2.5-fold) effect on the ligand selectivity of the mutant receptor. Substitution of Arg76, Asn81, and Gly83 in hCRF-R1 with the corresponding sequence of xCRF-R1 (Gln76, Gly81, and Val83) resulted in a receptor with approximately 11-fold higher affinity for human/rat CRF compared with ovine CRF or sauvagine. When only two of these three amino acids were mutated, no effect on the ligand selectivity was observed. On the basis of these data, it is suggested that amino acids 70-89 of CRF-R1 are important for the ligand binding site.  相似文献   

10.
In previous studies, tandem mutagenesis of Glu195 and Arg197 of surfactant protein A (SP-A) has implicated both residues as critical participants in the interaction of the molecule with alveolar type II cells and phospholipids. We substituted Ala, Lys, His, Asp, and Asn mutations for Arg to evaluate the role of a basic amino acid at position 197 in SP-A action. Unexpectedly, Ala197 retained complete activity in the SP-A functions of carbohydrate binding, type II cell binding, inhibition of surfactant secretion, lipid binding, lipid aggregation, and lipid uptake by type II cells. The results unambiguously demonstrate that Arg197 is not mechanistically essential for SP-A function. The Lys197 mutation displayed all functions of the wild type protein but exhibited a 2-fold increase in lipid uptake activity. The His197 mutation displayed all SP-A functions studied except for lipid uptake. The results obtained with the His197 mutation clearly demonstrate that lipid aggregation alone by SP-A is insufficient to promote lipid uptake by type II cells. These findings indicate that specific interactions between type II cells and SP-A are involved in the phospholipid uptake processes.  相似文献   

11.
Platelet-activating factor (PAF) is a potent phospholipid mediator that produces a wide range of biological responses. The PAF receptor is a member of the seven-transmembrane GTP-binding regulatory protein-coupled receptor superfamily. This receptor binds PAF with high affinity and couples to multiple signaling pathways, leading to physiological responses that can be inhibited by various structurally distinct PAF antagonists. We have used site-directed mutagenesis and functional expression studies to examine the role of the Phe97 and Phe98 residues located in the third transmembrane helix and Asn285 and Asp289 of the seventh transmembrane helix in ligand binding and activation of the human PAF receptor in transiently transfected COS-7 cells. The double mutant FFGG (Phe97 and Phe98 mutated into Gly residues) showed a 3-4-fold decrease in affinity for PAF, but not for the specific antagonist WEB2086, when compared with the wild-type (WT) receptor. The FFGG mutant receptor, however, displayed normal agonist activation, suggesting that these two adjacent Phe residues maintain the native PAF receptor conformation rather than interacting with the ligand. On the other hand, substitution of Ala for Asp289 increased the receptor affinity for PAF but abolished PAF-dependent inositol phosphate accumulation; it did not affect WEB2086 binding. Substitution of Asn for Asp289, however, resulted in a mutant receptor with normal binding and activation characteristics. When Asn285 was mutated to Ala, the resulting receptor was undistinguishable from the WT receptor. Surprisingly, substitution of Ile for Asn285 led to a loss of ligand binding despite normal cell surface expression levels of this mutant, as verified by flow cytometric analysis. Our data suggest that residues 285 and 289 are determinant in the structure and activation of the PAF receptor but not in direct ligand binding, as had been recently proposed in a PAF receptor molecular model.  相似文献   

12.
Glucokinase catalyzes a rate-limiting step in glucose metabolism in hepatocytes and pancreatic beta cells and is considered the "glucose sensor" for regulation of insulin secretion. Patients with maturity-onset diabetes of the young (MODY) have heterozygous point mutations in the glucokinase gene that result in reduced enzymatic activity and decreased insulin secretion. However, it remains unclear whether abnormal liver glucose metabolism contributes to the MODY disease. Here we show that disruption of the glucokinase gene results in a phenotype similar to MODY in heterozygous mice. Reduced islet glucokinase activity causes mildly elevated fasting blood glucose levels. Hyperglycemic clamp studies reveal decreased glucose tolerance and abnormal liver glucose metabolism. These findings demonstrate a key role for glucokinase in glucose homeostasis and implicate both islets and liver in the MODY disease.  相似文献   

13.
Recent crystallographic studies on Escherichia coli inorganic pyrophosphatase (E-PPase) have identified three Mg2+ ions/enzyme hexamer in water-filled cavities formed by Asn24, Ala25, and Asp26 at the trimer-trimer interface (Kankare, J., Salminen, T., Lahti, R., Cooperman, B., Baykov, A. A., and Goldman, A. (1996) Biochemistry 35, 4670-4677). Here we show that D26S and D26N substitutions decrease the stoichiometry of tight Mg2+ binding to E-PPase by approximately 0.5 mol/mol monomer and increase hexamer stability in acidic medium. Mg2+ markedly decelerates the dissociation of enzyme hexamer into trimers at pH 5.0 and accelerates hexamer formation from trimers at pH 7.2 with wild type E-PPase and the N24D variant, in contrast to the D26S and D26N variants, when little or no effect is seen. The catalytic parameters describing the dependences of enzyme activity on substrate and Mg2+ concentrations are of the same magnitude for wild type E-PPase and the three variants. The affinity of the intertrimer site for Mg2+ at pH 7.2 is intermediate between those of two Mg2+ binding sites found in the E-PPase active site. It is concluded that the metal ion binding site found at the trimer-trimer interface of E-PPase is a high affinity site whose occupancy by Mg2+ greatly stabilizes the enzyme hexamer but has little effect on catalysis.  相似文献   

14.
The regulation of conventional protein kinase Cs by Ca2+ was examined by determining how this cation affects the enzyme's 1) membrane binding and catalytic function and 2) conformation. In the first part, we show that significantly lower concentrations of Ca2+ are required to effect half-maximal membrane binding than to half-maximally activate the enzyme. The disparity between binding and activation kinetics is most striking for protein kinase C betaII, where the concentration of Ca2+ promoting half-maximal membrane binding is approximately 40-fold higher than the apparent Km for Ca2+ for activation. In addition, the Ca2+ requirement for activation of protein kinase C betaII is an order of magnitude greater than that for the alternatively spliced protein kinase C betaI; these isozymes differ only in 50 amino acids at the carboxyl terminus, revealing that residues in the carboxyl terminus influence the enzyme's Ca2+ regulation. In the second part, we use proteases as conformational probes to show that Ca2+dependent membrane binding and Ca2+-dependent activation involve two distinct sets of structural changes in protein kinase C betaII. Three separate domains spanning the entire protein participate in these conformational changes, suggesting significant interdomain interactions. A highly localized hinge motion between the regulatory and catalytic halves of the protein accompanies membrane binding; release of the carboxyl terminus accompanies the low affinity membrane binding mediated by concentrations of Ca2+ too low to promote catalysis; and exposure of the amino-terminal pseudosubstrate and masking of the carboxyl terminus accompany catalysis. In summary, these data reveal that structural determinants unique to each isozyme of protein kinase C dictate the enzyme's Ca2+-dependent affinity for acidic membranes and show that, surprisingly, some of these determinants are in the carboxyl terminus of the enzyme, distal from the Ca2+-binding site in the amino-terminal regulatory domain.  相似文献   

15.
16.
Although ligand binding in c-type cytochromes is not directly related to their physiological function, it has the potential to provide valuable information on protein stability and dynamics, particularly in the region of the methionine sixth heme ligand and the nearby peptide chain that has been implicated in electron transfer. Thus, we have measured the equilibrium and kinetics of binding of imidazole to eight mutants of Rhodobacter capsulatus cytochrome c2 that differ in overall protein stability. We found that imidazole binding affinity varies 70-fold, but does not correlate with overall protein stability. Instead, each mutant exerts an effect at the local level, with the largest change due to mutant G95E (glycine substituted by glutamate), which shows 30-fold stronger binding as compared with the wild-type protein. The kinetics of imidazole binding are monophasic and reach saturation at high ligand concentrations for all the mutants and wild-type protein, which is attributed to a rate-limiting conformational change leading to breakage of the iron-methionine bond and providing a binding site for imidazole. The mutants show as much as an 18-fold variation in the first-order rate constant for the conformational change, with the largest effect found with mutant G95E. The kinetics also show a lack of correlation with overall protein stability, but are consistent with localized effects on the dynamics of hinge region 88-102 of the protein, which changes conformation to permit ligand binding. These results are consistent with R. capsulatus cytochrome c2 stabilizing the complex through hydrogen bonding to the imidazole. The larger effects of mutant G95E on equilibrium and kinetics are likely to be due to its location within the hinge region adjacent to heme ligand methionine 96, which is displaced by imidazole.  相似文献   

17.
A soluble truncated form of the cation-dependent mannose 6-phosphate receptor (CD-MPR) encoding only the extracytoplasmic region, Stop155, and a truncated glycosylation-deficient form of the CD-MPR, Asn81/Stop155, which has been modified to contain only one N-linked glycosylation site at position 81 instead of five, were purified from baculovirus-infected High Five insect cells. The glycosylated recombinant proteins were functional in ligand binding and acid-dependent dissociation as assessed by pentamannosyl phosphate-agarose affinity chromatography. Gel filtration, sucrose gradients, and cross-linking experiments revealed that both Stop155 and Asn81/Stop155 are dimeric, demonstrating that the transmembrane and cytoplasmic region of the receptor as well as N-linked oligosaccharides at positions 31, 57, and 87 are not required for dimerization. The Kd of Stop155 and Asn81/Stop155 for the lysosomal enzyme, beta-glucuronidase, was 0.2 and 0.3 nM, respectively. These values are very similar to those reported for the full-length CD-MPR, demonstrating that the extracellular region of the CD-MPR is sufficient for high-affinity binding and that oligosaccharides at positions 31, 57, and 87 do not influence ligand binding.  相似文献   

18.
Trypsinogen is converted to trypsin by the removal of a peptide from the N terminus, which permits formation of a salt bridge between the new N-terminal Ile (residue 16) and Asp194. Formation of this salt bridge triggers a conformational change in the "activation domain" of trypsin, creating the S1 binding site and oxyanion hole. Thus, the activation of trypsinogen appears to represent an example of protein folding driven by electrostatic interactions. The following trypsin mutants have been constructed to explore this problem: Asp194Asn, Ile16Val, Ile16Ala, and Ile16Gly. The bovine pancreatic trypsin inhibitor (BPTI), benzamidine, and leupeptin affinities and activity and pH-rate profiles of these mutants have been measured. The changes in BPTI and benzamidine affinity measure destabilization of the activation domain. These experiments indicate that hydrophobic interactions of the Ile16 side chain provide 5 kcal/mol of stabilization energy to the activation domain while the salt bridge accounts for 3 kcal/mol. Thus, hydrophobic interactions provide the majority of stabilization energy for the trypsinogen to trypsin conversion. The pH-rate profiles of I16A and I16G are significantly different than the pH-rate profile of trypsin, further confirming that the activation domain has been destabilized. Moreover, these mutations decrease kcat/Km and leupeptin affinity in parallel with the decrease in stability of the activation domain. Acylation is selectively decreased, while substrate binding and deacylation are not affected. Together these observations indicate that the stability of protein structure is an important component of transition state stabilization in enzyme catalysis. These results also suggest that active zymogens can be created without providing a counterion for Asp194, and thus have important implications for the elucidation of the structural features which account for the zymogen activity of tissue plasminogen activator and urokinase.  相似文献   

19.
Shifts in the sigmoidal kinetics of allosteric threonine deaminase promoted by isoleucine and valine binding control branched chain amino acid biosynthesis in Escherichia coli. A highly conserved alpha-helix in the C-terminal regulatory domain of the tetrameric enzyme was previously implicated in effector binding and feedback inhibition. Double (447, 451) and triple (447, 451, 454) alanine replacements for the conserved amino acids leucine 447, leucine 451, and leucine 454 in this region yield enzyme variants that show increased sigmoidality in steady-state kinetics, and which are less sensitive to the allosteric modifiers isoleucine and valine. Equilibrium binding studies using fluorescence, enzyme kinetic, and calorimetric approaches indicate that the enzyme variants possess reduced affinity for isoleucine and valine, and suggest that heterotropic ligands can bind to the same site to promote their different effects. The increase in sigmoidal kinetics for the mutants relative to wild-type threonine deaminase may be attributable to the elimination of L-threonine binding to the effector sites, which activates the wild-type enzyme. Enzyme kinetic data and isotherms for active site ligand binding to the mutants can be analyzed in terms of a simple two-state model to yield values for allosteric parameters that are consistent with previous estimates based on an expanded two-state model for homotropic cooperativity for threonine deaminase.  相似文献   

20.
There is a need for synthesizing glucose-sensitive molecules which can be used in glucose sensors and self-regulating insulin delivery devices. Currently, glucose-sensitive proteins, such as glucose oxidase and concanavalin A (Con-A), are used for detecting glucose molecules. For long-term in vivo applications, it is necessary to synthesize non-proteineous glucose-sensitive molecules which are biocompatible, nontoxic, cost-effective, and independent of environmental factors such as pH, ionic strength, or the presence of divalent cations. As a first step toward synthesizing glucose sensitive molecules, we have compared glucose-binding sites of four different types of glucose-binding proteins. They are human beta-cell glucokinase, D-xylose isomerase, lectins (Lathyrus ochrus isolectin I and Con-A), and glucose/galactose binding protein. Analysis of the glucose-binding sites of their 3-dimensional crystal structures showed that the hydrogen bonds between the hydroxyl groups of glucose and a few types of amino acid residues of proteins provided the main attraction. In some cases, the same atom was involved in multiple hydrogen bonds. Hydrophobic interactions between the pyranose ring of glucose and aromatic rings of hydrophobic amino acid residues also played an important role in the glucose specificity. A sandwich geometry was observed among the hydrophobic groups. This comparative stereochemical analysis suggests that a possible glucose binding site can be made by placing Asp and Asn around glucose for hydrogen bonding and Phe on both sides of glucose for hydrophobic interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号