首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
为提高恶意代码检测准确率,增强网络空间的信息安全性,提出一种恶意代码自动检测判定方法,基于同种恶意代码同源性特征,融合级联操作与深度信念网络。分析不同类型下的恶意代码的显著特征,从样本集中提取图像、语令等基本数据信息,构建恶意代码检测模型,对基于限制波尔兹曼机算法的模型进行训练。实验结果表明,相比其它检测方案,所提模型检验恶意代码的准确率有显著提高。  相似文献   

2.
李萌  秦品乐  李传朋 《计算机应用》2016,36(9):2521-2525
针对深度信念网络(DBN)算法在采用反向传播修正网络的连接权值和偏置的过程中,容易产生梯度小、学习率低、误差收敛速度慢等问题,提出一种结合多新息理论对标准DBN算法进行改进的算法,即多新息DBN(MI-DBN)。MI-DBN算法是对标准DBN算法中反向传播的过程重新建模,使得算法在原先只利用单个新息的情况下,扩展为能够充分利用之前多个周期的新息,从而大幅提高误差收敛速度。通过实验对MI-DBN算法和其他分类算法进行了数据集分类的比较,实验结果表明,MI-DBN算法相较其他分类算法,其误差收敛速度较快,而且最终对MNIST数据集和Caltech101数据集的识别中误差结果相对更小。  相似文献   

3.
深度信念网络研究综述   总被引:1,自引:0,他引:1  
深度学习作为新兴的一种多层神经网络学习算法,具有优异的特征学习能力,引起了机器领域的广泛关注。深度信念网络是深度学习中重要模型,首先介绍深度学习起源,后分析深度信念网络中的基本模块及其训练方法,再介绍深度信念网络的基本结构及其学习过程,最后总结当前深度信念网络当前存在的问题。  相似文献   

4.
深度信念网络(Deep belief network, DBN)是一种基于深度学习的生成模型, 克服了传统梯度类学习算法在处理深层结构所面临的梯度消失问题, 近几年来已成为深度学习领域的研究热点之一.基于分阶段学习的思想, 人们设计了不同结构和学习算法的深度信念网络模型.本文在回顾总结深度信念网络的研究现状基础上, 给出了其发展趋势.首先, 给出深度信念网络的基本模型结构以及其标准的学习框架, 并分析了深度信念网络与其他深度结构的关系与区别; 其次, 回顾总结深度信念网络研究现状, 基于标准模型分析不同深度信念网络结构的性能; 第三, 给出深度信念网络的不同无监督预训练和有监督调优算法, 并分析其性能; 最后, 给出深度信念网络今后的发展趋势以及未来值得研究的方向.  相似文献   

5.
6.
基于自适应学习率的深度信念网设计与应用   总被引:1,自引:0,他引:1  
针对深度信念网(Deep belief network,DBN)预训练耗时长的问题,提出了一种基于自适应学习率的DBN(Adaptive learning rate DBN,ALRDBN).ALRDBN将自适应学习率引入到对比差度(Contrastive divergence,CD)算法中,通过自动调整学习步长来提高CD算法的收敛速度.然后设计基于自适应学习率的权值训练方法,通过网络性能分析给出学习率变化系数的范围.最后,通过一系列的实验对所设计的ALRDBN进行测试,仿真实验结果表明,ALRDBN的收敛速度得到了提高且预测精度也有所改善.  相似文献   

7.
管小卫  丁琳 《软件工程》2021,(10):18-22
针对离线手写汉字的特征提取困难、不能准确识别等问题,提出了一种胶囊网络与深度置信网络的融合模型.首先从CASIA-HWDB1数据集中随机选择了一些文本分别训练胶囊网络和深度置信网络,然后采用胶囊网络和深度置信网络的融合策略进行了手写汉字识别实验.实验结果表明,在不确定方向上使用汉字融合模型的错误率降低了5.2%,与单独...  相似文献   

8.
杨洋  吕光宏  赵会  李鹏飞 《软件学报》2020,31(7):2184-2204
数据转发与控制分离的软件定义网络(softwaredefinednetworking,简称SDN)是对传统网络架构的彻底颠覆,为网络各方面的研究引入了新的机遇和挑战.随着传统网络研究方法在SDN中遭遇瓶颈,基于深度学习的方法被引入到SDN的研究中,在实现实时智能的网络管控上成果颇丰,推动了SDN研究的深入发展.调查了深度学习开发平台,训练数据集、智能SDN架构等深度学习引入SDN的促进因素;对智能路由、入侵检测、流量感知和其他应用等SDN研究领域中的深度学习应用进行系统的介绍,深入分析了现有深度学习应用的特点和不足;最后展望了SDN未来的研究方向与趋势.  相似文献   

9.
交通标志的正确识别是智能车辆规范行驶、道路交通安全的前提。为解决智能车采集目标图像模糊、分辨率低,造成识别精度低且时效性差的问题,构建一种基于级联深度网络的交通标志识别模型,该模型级联超分辨率处理网络ESPCN与目标检测识别网络RFCN,ESPCN网络提高输入采集图像的分辨率,为低分辨率图像实现超分辨率处理,RFCN网络提取图像全局特征,实现交通标志的检测与分类识别。平衡采样及多尺度的训练策略结合数据增强的预处理方法,增强了网络模型的鲁棒性及扩展性。经实验验证,算法模型针对常见交通标志识别率达到98.16%,召回率达到96.2%,且鲁棒性较好。  相似文献   

10.
DBN网络的深度确定方法   总被引:5,自引:0,他引:5  
针对DBN网络隐含层层数难以选择的问题,首先从数学生物学角度分析了随机初始化的梯度下降法导致网络训练失败的原因,并进行验证,证明了RBM重构误差与网络能量的正相关定理;然后根据隐含层和误差的关系,提出一种基于重构误差的网络深度判断方法,在训练过程中自组织地训练网络,使其能够以一种接近人类处理问题的方式解决AI问题。手写数字识别的实验表明,该方法能够有效提高运算效率,降低运算成本。  相似文献   

11.
针对在将卡口非结构化视频图像数据转化为智能结构化信息的过程中存在环境的复杂性、需求的多样性、任务的关联性和识别的实时性等问题,提出了一种级联多任务深度学习网络的卡口识别引擎方法,其通过充分利用分割、检测、识别等任务之间的相互联系实现了高精度的、高效的、同步实时的卡口车辆多种基本信息的识别(车型、品牌、车系、车身颜色以及车牌等识别任务)。首先,利用深度卷积神经网络自动完成车型的深度特征学习,在特征图上进行逻辑回归,从卡口道路复杂背景中提取出感兴趣区域(包括多车辆对象);然后,利用多任务深度学习网络对提取出来的车辆对象实现多层次的多任务识别。实验结果表明,提出的方法在识别精度和效率上都明显优于传统计算机视觉方法和现有的基于深度学习的识别引擎技术,该方法对车型、品牌、车系及车牌的识别与检测精度均达到98%以上,检测效率提升了1.6倍。  相似文献   

12.
针对传统故障诊断方法中特征提取技术难度大、故障样本获取困难等问题,在深度学习计算框架下提出了一种半监督训练的故障检测方法,利用深度信念网络中的受限波茨曼机堆栈结构实现了数据高层特征的自动提取,结合支持向量数据描述方法实现了异常数据检测,只需利用正常工况的数据样本进行网络训练和模型拟合,无需故障样本数据,也无需人工干预进行信号特征提取,即能实现对故障数据进行的实时检测和判别;经采用标准轴承实验数据的三组故障数据进行验证,故障识别率达到100%,具有很强的工程应用价值。  相似文献   

13.
针对BP神经网络类方法对标签数据的依赖性缺陷,提出了一种基于深度自动编码网络的态势评估方法。模型应用深度自动编码器作为基本单元构建深度自编码网络,结合专家经验和层次化评估的方法训练深度自编码网络。利用无标签数据采用无监督逐层算法对网络进行预训练,确定网络各层参数及权值的范围空间。在此基础上,采用有监督算法使用有标签样本对网络进行微调,对各层参数及权值进行优化,最终形成具有对输入态势数据进行准确评估能力的模型。多种样本数量条件下的对比实验表明,相对于BP神经网络类方法,基于深度自动编码网络模型受标签的影响较小,明显减少了对专家经验的依赖,并且具有整体上较高的评估精度。  相似文献   

14.
"先使用,后付费"的营销方式导致电网公司电费回收不到位,难以支撑正常运转和获得基本效益。为了解决电力欠费对电网公司的不利影响,论文提出电力欠费预警智能预测的研究方法。将电费回收分为时间和金额两部分,结合相应的关联指标,建立参数自适应的深度信念网络,通过深度学习和训练对电力欠费情况精准预测。实验结果表明,与BP神经网络相比,深度信念网络更能准确预测出用户电费回收的未来情况,有效辅助电力企业制定用电和电费预警策略。  相似文献   

15.
文章讨论网络安全态势感知技术,使用自适应权重聚类算法得到网络行为分析的聚类结果,且在分析时通过将加权距离优化,保证类间差异最大化.将网络行为分析的聚类结果输入到基于NAWL-ILSTM的网络安全态势感知模型中,通过长短期记忆网络和优化器方法改进Nadam的优化算法(NAWL),共同进行深度学习,得出网络安全态势感知结果...  相似文献   

16.
精准地预判网络流量变化趋势可以帮助运营商准确预估网络的使用情况,合理分配并高效利用网络资源,以满足日益增长且多样化的用户需求.以深度学习算法在网络流量预测领域的进展为线索,阐述了网络流量预测的评价指标和目前公开的网络流量数据集及应用,具体分析了网络流量预测中常用的深度信念网络、卷积神经网络、循环神经网络和长短时记忆网络...  相似文献   

17.
由于空气污染与吸烟等原因, 肺炎已成为人类死亡率最高的疾病之一. 随着机器学习与深度学习技术在医疗图像检测上的应用, 为临床专家诊断各类疾病提供了帮助. 但由于缺少有效的配对肺部X射线数据集, 以及现有针对肺炎检测的方法均采用不是针对肺炎任务的普遍分类模型, 难以发现肺炎图像与正常图像的细微差别, 导致识别失败. 为此, 本文通过数据裁剪、旋转等方式扩充数据集中的正常图像; 再使用50层深度残差网络对胸部X射线中的浅层肺炎特征进行学习; 然后, 通过两层字典对残差网络学习到的肺炎特征进行更深度的抽象和学习, 发现不同肺部图像之间的微小差别; 最后, 融合残差网络和字典学习提取到的多级肺炎特征, 构建肺炎检测模型. 为了验证算法的有效性, 在Chest X-ray肺炎数据集上评估肺炎检测模型的性能. 根据测试结果, 本文提出模型的检测准确率为97.12%; 指标测试中, 精度与召回率之间的调和平均数上的得分为97.73%. 与现有方法相比, 获得了更高的识别精度.  相似文献   

18.
基于深度残差网络图像分类算法研究综述   总被引:2,自引:0,他引:2  
近年来,由于计算机技术的飞速迅猛发展,特别是硬件条件的改善,计算能力不断提高,深层神经网络训练的时间大大缩短,深度残差网络也迅速成为一个新的研究热点.深度残差网络作为一种极深的网络架构,在精度和收敛等方面都展现出了很好的特性.研究者们深入研究其本质并在此基础上提出了很多关于深度残差网络的改进,如宽残差网络,金字塔型残差网络,密集型残差网络,注意力残差网络等等.本文从残差网络的设计出发,分析了不同残差单元的构造方式,介绍了深度残差网络不同的变体.从不同的角度比较了不同网络之间的差异以及这些网络架构在常用图像分类数据集上的性能表现.最后我们对于这些网络进行了总结,并讨论了未来深度残差网络在图像分类领域的一些研究方向.  相似文献   

19.
因大规模任务处理模型在处理实际任务请求通常是基于历史数据的,若总依据经验和以往知识判断,会出现许多无法识别并处理的任务,以及出现模型过拟合等问题.提出了一种基于深度神经网络的计算模型进行大规模任务部署,并引用Agent强化学习效用进行评价,实现最佳虚拟网络映射方案.实验结果表明,这种BD T ard方法法能满足大规模任务请求,稳定系统长期收益,保障了大数据环境下大规模任务处理的高效执行.  相似文献   

20.
小波神经网络初始值的选择   总被引:3,自引:0,他引:3  
小波神经网络参数初始值影响着网络收敛速度的快慢,甚至关系到网络能否收敛。为了减少网络训练次数,提高收敛速度,提出了一种更简便易行的选择方法,通过将此方法的仿真结果与采用随机选取初始值的方法所得仿真结果进行对比,证明此方法既可行又有效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号