首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Eutectic rods of Al2O3-Er3Al5O12 were grown by directional solidification using the laser-heated floating zone method at rates in the range 25-1500 mm/h. Their microstructure and mechanical properties (hardness, toughness and strength) were investigated as a function of the growth rate. A homogeneous and interpenetrated microstructure was found in most cases, and interphase spacing decreased with growth rate following the Hunt-Jackson law. Hardness increased slightly as the interphase spacing decreased while toughness was low and independent of the microstructure. The rods presented very high bending strength as a result of the homogeneous microstructure, and their strength increased rapidly as the interphase spacing decreased, reaching a maximum of 2.7 GPa for the rods grown at 750 mm/h. The bending strength remained constant up to 1300 K and decreased above this temperature. The relationship between the microstructure and the mechanical properties was established from the analysis of the microstructure and of the fracture mechanisms.  相似文献   

2.
The sintering behavior of synthetic diamond with a grain size of 2-4 µm was investigated at high pressure and high temperatures (6.5 GPa and 1600°-1900°C, respectively) in the presence of TiC0.6 or TiC. No well-sintered diamond composite was synthesized from a diamond-TiC powder mixture under the examined conditions; however, a well-sintered diamond composite with a homogeneous microstructure was synthesized under the conditions of 6.5 GPa and temperatures >1800°C using a diamond-TiC0.6 powder mixture. The diamond composite was hard (Vickers hardness of 45 GPa) and was composed of diamond and TiC, in which TiC was formed via the reaction of TiC0.6 and carbon atoms of diamond. Neither graphitization nor cracking was observed in or on the composite after successive heat treatment at 900°-1400°C for 30 min each under vacuum. The Vickers hardness of the composite that was treated at 1500°C decreased to 40 GPa, whereas the Vickers hardness values for composites treated at temperatures of <1400°C were not changed. The present diamond composite is believed to be one of the most heat-resistant materials among the superhard composites and can be used as heat-resistant tools for superhard materials.  相似文献   

3.
This work presents a novel method for preparing an Al2O3/YAG/ZrO2 ternary eutectic whereby combustion synthesis melt casting has been combined with the ultra-high gravity (UHG) technique. The fabricated product had a relative density of 99.3% of the theoretical one. Phase composition and microstructure analyses indicated that the application of UHG resulted in a metal-free ceramic microstructure with no porosity or microcracks. The microstructure comprises ZrO2 rods dispersed in Al2O3. The product had 17.82 GPa Vickers hardness and 5.51 MPa·m1/2 fracture toughness.  相似文献   

4.
Directionally solidified Al2O3/GdAlO3 eutectic ceramic rods with high densities and low solidification defects are prepared by laser floating zone melting at solidification rate from 2 to 200 μm/s. The microstructure evolution, eutectic growth behavior and mechanical properties are investigated. At low solidification rates (<30 μm/s), the eutectic rods present a homogeneous irregular eutectic microstructure, whereas cellular microstructure containing regular lamella/rod structure is developed at higher solidification rates. The relationship is established between the eutectic interphase spacing and solidification rate, which follows the Magnin-Kurz eutectic model. The Vickers hardness (15.9–17.3 GPa) increases slightly with decreasing interphase spacing, but the fracture toughness (4.08 MPa m1/2) shows little dependence with the solidification rate. Different crack propagation mechanisms are revealed among the indentation cracks. The flexural strength at ambient temperature reaches up to 1.14 GPa for the eutectic grown at 100 μm/s. The fracture surface analysis indicates that the surface defects are the main crack source.  相似文献   

5.
Pressureless Sintering of Zirconium Diboride   总被引:3,自引:0,他引:3  
Zirconium diboride (ZrB2) ceramics were sintered to a relative density of ∼98% without applied external pressure. Densification studies were performed in the temperature range of 1900°–2150°C. Examination of bulk density as a function of temperature revealed that shrinkage started at ∼2100°C, with significant densification occurring at only 2150°C. At 2150°C, isothermal holds were used to determine the effect of time on relative density and microstructure. For a hold time of 540 min at 2150°C, ZrB2 pellets reached an average density of 6.02±0.04 g/cm3 (98% of theoretical) with an average grain size of 9.0±5.6 μm. Four-point bend strength, elastic modulus, and Vickers' hardness were measured for sintered ZrB2 and compared with values reported for hot-pressed materials. Vickers' hardness of sintered ZrB2 was 14.5±2.6 GPa, which was significantly lower when compared with 23 GPa for hot-pressed ZrB2. Strength and elastic modulus of the ZrB2 were 444±30 MPa and 454 GPa, which were comparable with values reported for hot-pressed ZrB2. The ability to densify ZrB2 ceramics without hot pressing should enable near-net shape processing, which would significantly reduce the cost of fabricating ZrB2 components compared with conventional hot pressing and machining.  相似文献   

6.
An in situ reactive hot-pressing process using zirconium (zirconium hydride), aluminum, and graphite as staring materials and Si and Y2O3 as additives was used to synthesize bulk Zr3Al3C5 ceramics. This method demonstrates the advantages of easy synthesis, lower sintering temperature, high purity and density, and improved mechanical properties of synthesized Zr3Al3C5. Its electrical and thermal properties were measured. Compared with ZrC, Zr3Al3C5 has a relatively low hardness (Vickers hardness of 12.5 GPa), comparable stiffness (Young's modulus of 374 GPa), but superior strength (flexural strength of 488 GPa) and toughness (fracture toughness of 4.68 MPa·m1/2). In addition, the stiffness decreases slowly with increasing temperature and at 1600°C remains 78% of that at ambient temperature, indicating that Zr3Al3C5 is a potential high-temperature structural ceramic.  相似文献   

7.
In this work, a bulk Nb4AlC3 ceramic was prepared by an in situ reaction/hot pressing method using Nb, Al, and C as the starting materials. The reaction path, microstructure, physical, and mechanical properties of Nb4AlC3 were systematically investigated. The thermal expansion coefficient was determined as 7.2 × 10−6 K−1 in the temperature range of 200°–1100°C. The thermal conductivity of Nb4AlC3 increased from 13.5 W·(m·K)−1 at room temperature to 21.2 W·(m·K)−1 at 1227°C, and the electrical conductivity decreased from 3.35 × 106 to 1.13 × 106Ω−1·m−1 in a temperature range of 5–300 K. Nb4AlC3 possessed a low hardness of 2.6 GPa, high flexural strength of 346 MPa, and high fracture toughness of 7.1 MPa·m1/2. Most significantly, Nb4AlC3 could retain high modulus and strength up to very high temperatures. The Young's modulus at 1580°C was 241 GPa (79% of that at room temperature), and the flexural strength could retain the ambient strength value without any degradation up to the maximum measured temperature of 1400°C.  相似文献   

8.
The mechanical properties of layered Ce-TZP/Al2O3 composites with laminate and cellular morphologies have been investigated. The strength and toughness increase as the layer thickness decreases, and the amount of transformation in the Ce-TZP layer increases discontinuously at the laminate/cellular transition. Very high strengths (1.1 GPa) and toughnesses (16 MPa·m1/2) have been obtained in some cases. These results indicate that the progressive refinement of layer microstructure and the disruption of planar connectivity of phases are beneficial to the mechanical performance, because they provide more stress concentrators to trigger stress-assisted transformation for toughening functions. The composites of finer microstructure, with a layer thickness of lessthan equal to20 µm, have a homogeneous hardness of 11.5 GPa, which is a considerable improvement over that of Ce-TZP alone.  相似文献   

9.
Directionally solidified Al2O3–Er3Al5O12–ZrO2 eutectic rods were processed using the laser floating zone method at growth rates of 25, 350 and 750 mm/h to obtain microstructures with different domain size. The mechanical properties were investigated as a function of the processing rate. The hardness, ∼15.6 GPa, and the fracture toughness, ∼4 MPa m1/2, obtained from Vickers indentation at room temperature were practically independent of the size of the eutectic phases. However, the flexural strength increased as the domain size decreased, reaching outstanding strength values close to 3 GPa in the samples grown at 750 mm/h. A high retention of the flexural strength was observed up to 1500 K in the materials processed at 25 and 350 mm/h, while superplastic behaviour was observed at 1700 K in the eutectic rods solidified at the highest rate of 750 mm/h.  相似文献   

10.
Dense Nb2AlC ceramic was synthesized from NbC, Nb, and Al powder mixture at 1650°C and a pressure of 30 MPa for 90 min using an in situ reaction/hot-pressing method. The reaction kinetics, microstructure, physical, and mechanical properties of the fabricated material were investigated. A thermal expansion coefficient of ∼8.1 × 10−6 K−1 was measured in the temperature range of 30°–1050°C. At room temperature a thermal conductivity of ∼20 W·(m·K)−1 and a Vickers hardness of ∼4.5 GPa were determined. The material attained Young's modulus, four-point bending strength and fracture toughness of ∼294 GPa, ∼443 MPa, and ∼5.9 MPa·m1/2, respectively. The nanolayered grains with a mean grain size of 17 μm contributed to the damage tolerance of this ceramic. Quenching from 600°, 800°, and 1000°C into water at room temperature resulted in decrease in bending strength from 443 MPa for the as-synthesized Nb2AlC to 391, 156, and 149 MPa, respectively.  相似文献   

11.
Bulk Ti3AlC ceramic containing 2.68 wt% TiC was prepared by an in situ reaction/hot-pressing route. The reaction path, microstructure, mechanical and thermal properties were systematically investigated. At room temperature Vickers hardness of Ti3AlC ceramic is 7.8 GPa. The flexural strength, compressive strength, and fracture toughness are 182, 708 MPa, and 2.6 MPa·m1/2, respectively. Its apparent Young's modulus, shear modulus, bulk modulus and Possion's ratio are 208.9, 83.4, 140.4 GPa, and 0.25 at room temperature. Apparent Young's modulus decreases slowly with the increasing temperature, and at 1210°C the modulus is 170 GPa. The average coefficient of thermal expansion of Ti3AlC ceramic is about 10.1 × 10−6 K−1 in the temperature range of 150°–1200°C. Both the molar heat capacity and thermal conductivity increase with an increase in the temperature. At 300 and 1373 K, the molar heat capacities are 87 and 143·J·(mol·K)−1, while the thermal conductivities are 8.19 and 15.6 W·(m·K)−1, respectively.  相似文献   

12.
Pressureless sintering was used to densify ZrB2–SiC ultra-high temperature ceramics. The physical, mechanical, thermal, electrical, and high temperature properties were investigated. This comprehensive set of properties was measured for ZrB2 containing 20 vol% SiC in which B4C and C were used as the sintering aids. The three-point flexural strength was 361±44 MPa and the elastic modulus was 374±25 GPa. The Vickers hardness and fracture toughness were 14.7±0.2 GPa and 4.0±0.5 MPa·m1/2 respectively. Scanning electron microscopy studies of the microstructure of ZrB2–SiC showed that SiC particles were distributed homogenously in the ZrB2 matrix with little residual porosity.  相似文献   

13.
The influence of ball-milling methods on microstructure and mechanical properties of silicon nitride (Si3N4) ceramics produced by pressureless sintering for a sintering additive from MgO–Al2O3–SiO2 system was investigated. For planetary high-energy ball milling, the mechanical properties of Si3N4 ceramics were evidently improved and a homogeneous microstructure developed. In contrast, some exaggerated elongated grains were developed due to the local enrichment of sintering additives in the specimen prepared by general ball milling. For Si3N4 ceramics produced by planetary ball milling, flexure strength of 1.06 GPa, Vickers hardness of 14.2 GPa, and fracture toughness of 6.6 MPa·m0.5 were achieved. The differences in the mechanical properties of Si3N4 ceramics produced by different processing seem to arise mainly from the changes in microstructural homogenization and sinterability. The planetary high-energy ball-milling process provides a good route to mix starting powders for developing ceramics with uniform microstructure and promising mechanical properties.  相似文献   

14.
ZrO2–Al2O3 nanocrystalline powders have been synthesized by oxidizing ternary Zr2Al3C4 powders. The simultaneous oxidation of Al and Zr in Zr2Al3C4 results in homogeneous mixture of ZrO2 and Al2O3 at nanoscale. Bulk nano- and submicro-composites were prepared by hot-pressing as-oxidized powders at 1100°–1500°C. The composition and microstructure evolution during sintering was investigated by XRD, Raman spectroscopy, SEM, and TEM. The crystallite size of ZrO2 in the composites increased from 7.5 nm for as-oxidized powders to about 0.5 μm at 1500°C, while the tetragonal polymorph gradually converted to monolithic one with increasing crystallite size. The Al2O3 in the composites transformed from an amorphous phase in as oxidized powders to θ phase at 1100°C and α phase at higher temperatures. The hardness of the composite increased from 2.0 GPa at 1100°C to 13.5 GPa at 1400°C due to the increase of density.  相似文献   

15.
The mechanical properties of Bi2Sr2CaCu2O8+delta fibers produced via laser-induced directional solidification at different growth rates were determined through longitudinal and transverse tension tests, as well as flexure tests. In addition, polished sections of as-received fibers and the fracture surfaces of the broken samples were examined using scanning electron microscopy to elucidate the relationship between the microstructure and the mechanical properties. The fibers were anisotropic, and the transverse fiber strength was very low, because of early failure via cleavage of the grains perpendicular to the c -axis. The longitudinal strength and the degree of anisotropy increased as the fiber growth rate decreased, whereas the transverse strength followed the opposite trend. This behavior was due to changes in the porosity and the alignment of the crystals along the fiber axis.  相似文献   

16.
Novel Lu-α-SiAlON ceramics were produced by hot pressing mixtures of Si3N4, Lu2O3, AlN, and Al2O3 at 1950°C for 2 h in a nitrogen atmosphere. The resultant SiAlON was fully dense and possessed a uniform, equiaxed microstructure with a grain size of ∼1 μm, which resulted in a high hardness of >19 GPa. In addition to high hardness, the sample showed very high optical transparency in the visible light region, with >70% transmission at higher wavelengths. This high transparency was attributed to the uniform, dense microstructure and lack of residual grain-boundary phase.  相似文献   

17.
In situ synthesis of bulk Al3BC3 was achieved via a reactive hot-pressing method using Al, B4C, and graphite powders at 1800°C for 2 h. The reaction path for synthesizing Al3BC3 was investigated. It was found that Al3BC3 formed via the reaction of C, B4C, and Al4C3 above 1180°C. Dense Al3BC3 was prepared with a little B4C and graphite remained. Microstructure observations revealed the plate-like morphology of Al3BC3 grains. Moreover, the mechanical properties of Al3BC3 were characterized (Vickers hardness of 11.1 GPa, bending strength of 185 MPa, fracture toughness of 2.3 MPa·m1/2, and Young's modulus of 163 GPa). Young's modulus decreased slowly with increasing temperature, and at 1600°C remained 79% of that at ambient temperature. These results show that Al3BC3 is a promising lightweight high temperature structural material.  相似文献   

18.
Dense polycrystalline eutectics of alumina and yttrium aluminum garnet (YAG) were fabricated by hot-pressing powders of pulverized arc-melted buttons at homologous temperatures of 0.9 T eu–0.93 T eu (where T eu is the eutectic temperature). The eutectic microstructure of the arc-melted buttons was retained after densification, although the grain boundaries were decorated with equiaxed grains of alumina and YAG ∼1–5 μm in size; possible causes for their formation have been discussed. A comparison of the measured strength of the polycrystalline eutectics (274 ± 61 MPa) with grain size and fracture toughness suggests that the strength-limiting flaws are significantly smaller than the mean grain size and larger than the mean eutectic spacing.  相似文献   

19.
A novel glass–ceramic material was developed from the melt of a TiO2-containing iron-making slag with additional waste glass. The high percentage (∼20 wt% TiO2) of this network-modifying oxide has promoted a crystallization of the parent glass, resulting in a fine-grained, homogeneous polycrystalline material with high mechanical properties ( E =120 GPa, flexural strength=∼180 MPa, and Vickers hardness=7 GPa) after a heat treatment at 1100°C for 2 h. The room temperature and elevated temperature fracture toughness were also studied. The main crystalline phases of the glass–ceramic material were of the pyroxene series until heat-treatment temperature reached 1000°C, at which titanium-rich perovskite and armalcolite crystals became the dominant phases. The end material is high-strength, aesthetically acceptable (metallic gray or opaque brown colored), and suitable for structural and architectural applications.  相似文献   

20.
Si3N4ceramics were fabricated by tape casting of a raw-powder slurry seeded with three types of rodlike β-Si3N4particles. The effects of seed size on the microstructure and mechanical properties of the sintered specimens were investigated. All the seeded and tape-cast silicon nitrides presented an anisotropic microstructure, where the elongated grains grown from seeds were preferentially oriented parallel to the casting direction. The orientation degree of these grains, f 0, was affected by seed size, and small-seed addition led to the highest f 0value. This material exhibited high bending strength (∼1.4 GPa) and high fracture toughness (∼12 MPa.m1/2) in the direction normal to the grain alignment, which were attributed to the highly anisotropic and fine microstructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号