首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Our previous paper [1] has described an unconventional chemically regenerative redox fuel cell, including a modest amount of performance data, and has pointed out a number of problem areas. This paper describes additional work and some attempts that have been made to improve the cell performance in several of the problem areas described in the first paper. Two different redox fuel cell systems employing the V2+/V3+ and Mo3+Mo4+ redox couples as the anolyte, and a new NO 3 –/NO catalyst system for VO2+ oxidation were explored and described. The reduction of Na2MoO4 to Mo4+ and Mo3+ by H2 in concentrated H2SO4 solution was studied in small scale laboratory experiments and discussed. The performance of a redox cell in which H2 was obtained from the Pd-catalysed decomposition of formic acid, HCOOH, is described and the results of experiments with different membranes are reported. The results of experiments using WC as a hydrogenation catalyst at a temperature of 70–90° C with mixed molybdo-tungsto-silicic acids are reported and discussed.  相似文献   

2.
Exploratory experiments with three types of redox fuel cells utilizing the VO 2 + /VO2+-Sn2+/Sn4+, VO 2 + /VO2+-Fe2+/Fe3+ and VO 2 + /VO2+-Cu/Cu2+ redox couples are reported. The results show the major features and problems, and suggest possible solutions to some of the problems associated with operating redox fuel cells. In this phase of experimentation the best individual cell performances that were achieved showed that the VO 2 + /VO2+-Sn2+/Sn2+ redox cell had a power density of 0.049 W cm–2, the VO 2 + /VO2+-Fe2+/Fe3+ redox cell had a power density equal to 0.049 W cm–2 and the V 2 + /VO2+-Cu/Cu2+ redox fuel cell had a power density of 0.093 W cm–2.  相似文献   

3.
Three different types of membrane have been tested in a chemically regenerative redox fuel cell. It was found that a Nafion membrane gave the best polarization curves, but also that a much cheaper silica-filled polyethylene membrane could be used. A polysulphone membrane ranked number three  相似文献   

4.
The kinetics of the reduction of TiO2+ with H2 has been studied using a platinum catalyst in hydrochloric acid medium. The kinetic results were used to design the performance of a chemically regenerative redox fuel cell with the Ti3+/TiO2+ redox couple as anode system. Also the results from another chemically regenerative redox fuel cell with the Fe(EDTA)2–/Fe(EDTA) redox couple as anode system are presented. In both redox cells the VO 2 + /VO2+ redox couple was used as cathode system.  相似文献   

5.
张新荣  王涛  张伟  刘向  孙毅  王东 《化工进展》2011,30(4):734-738
报道了反应条件对一体式再生燃料电池单体电池性能的影响,并对单体电池的极化特性和循环稳定性进行测试。结果表明:URFC单体电池表现出优异的电性能和良好的循环稳定性。双模式工作条件下,反应温度控制在60~70 ℃比较合适。在燃料电池模式下,提高氧气压力可以更显著的提高电池性能;在氢气相对湿度为100%条件下,氧气相对湿度对电池性能影响不大,当电流密度大于500 mA/cm2时,采用干态氧气和相对湿度为100%氧气时,电池性能趋于一致。  相似文献   

6.
A promising approach to improving the energy density of the all-vanadium redox flow battery while also saving on raw materials costs, is to eliminate the positive half-cell electrolyte and replace it with an air electrode to produce a hybrid vanadium–oxygen redox fuel cell (VOFC). This concept was initially proposed by Kaneko et al. in 1992 and first evaluated at the University of New South Wales by Menictas and Skyllas-Kazacos in 1997. In this project the performance of the VOFC over a range of temperatures and using different types of membranes and air electrode assemblies was evaluated. Despite early problems with the membrane electrode assemblies that saw separation of the membrane due to swelling and expansion during hydration, with improved fabrication techniques, this problem was minimized and it was possible to operate a 5-cell VOFC system for a total of over 100 h without any deterioration in its performance.  相似文献   

7.
We demonstrate a new microfluidic fuel cell design with high-surface area porous carbon electrodes and high aspect ratio channel, using soluble vanadium redox species as fuel and oxidant. The device exhibits a peak power density of 70 mW cm−2 at room temperature. In addition, low flow rate operation is demonstrated and single pass fuel utilization levels up to 55% are achieved. The proposed design facilitates cost-effective and rapid fabrication, and would be applicable to most microfluidic fuel cell architectures.  相似文献   

8.
Advancements in the performance of the direct methanol redox fuel cell (DMRFC) were made through anolyte/catholyte composition and cell temperature studies. Catholytes prepared with different iron salts were considered for use in the DMRFC in order to improve the catholyte charge density (i.e., iron salt solubility) and fuel cell performance. Following an initial screening of different iron salts, catholytes prepared with FeNH4(SO4)2, Fe(ClO4)3 or Fe(NO3)3 were selected and evaluated using electrolyte conductivity measurements, cyclic voltammetry and fuel cell testing. Solubility limits at 25 °C were observed to be much higher for the Fe(ClO4)3 (>2.5 M) and Fe(NO3)3 (>3 M) salts than FeNH4(SO4)2 (~1 M). The Fe(ClO4)3 catholyte was identified as a suitable candidate due to its high electrochemical activity, electrochemical reversibility, observed half-cell potential (0.83 V vs. SHE at 90 °C) and solubility. DMRFC testing at 90 °C demonstrated a substantial improvement in the non-optimized power density for the perchlorate system (79 mW cm−2) relative to that obtained for the sulfate system (25 mW cm−2). Separate fuel cell tests showed that increasing the cell temperature to 90 °C and increasing the methanol concentration in the anolyte to 16.7 M (i.e., equimolar H2O/CH3OH) yield significant DMRFC performance improvements. Stable DMRFC performance was demonstrated in short-term durability tests.  相似文献   

9.
对一体式可再生燃料电池双效氧电极催化剂进行研究,考察了析氧催化剂和贵金属Pt黑组成的复合催化剂的双效性能以及催化剂配比和焙烧温度对性能的影响,用XRD对催化剂的物相特性进行表征。结果表明:复合催化剂的燃料电池性能按以下顺序递减:Pt黑>Pt/Ru/Ir>Pt/Ru>Pt/IrO2~Pt/Ir>Pt/RuO2;水电解性能按以下顺序递减:Pt/IrO2>Pt/RuO2>Pt/Ir>Pt黑。分析比较,Pt/IrO2复合催化剂表现出良好的燃料电池/水电解双功能特性以及循环稳定性,具有最佳的URFC能量转换效率。因此,Pt/IrO2复合催化剂是最适宜的双效氧电极催化剂。一定温度范围内的焙烧处理对Pt/IrO2催化剂燃料电池性能影响不大,而对水电解性能具有一定的影响,大电流密度运行,未焙烧处理的Pt/IrO2催化剂表现出更好的水电解性能。  相似文献   

10.
In this work, a gas diffusion layer (GDL) prepared with metallic ceramics TiC for a unitized regenerative fuel cell (URFC) was first investigated. By the measurements of morphological characteristic, electrical conductivity, absolute through-plane permeability and electrochemical stability, the characteristics of the novel GDLs and the conventional one were compared. A high corrosion-resistive and low-cost GDL with 80 wt.% TiC and 20 wt.% IrTiOx was expected to enhance the cycle performance of URFC. And the total loading of Ir in the novel URFC was only 1.3 mg cm−2. The URFC with the novel GDL exhibited the similar initial performance under both fuel cell and electrolysis modes as that using the conventional GDL. However, the life cycle testing over 60 h showed that the URFC with the novel GDL was more stable than the URFC with the traditional GDL, indicating that the GDL with TiC and IrTiOx was beneficial to improve the cycle life of the URFC.  相似文献   

11.
In this work on regenerative fuel cells, the initial part deals with water electrolysis using a cell design that closely resembled that of a solid polymer fuel cell. The electrolytes were Nafion® 117 and the Dow experimental membrane. The electrodes were Pt-on-C and Pt/Ir-on-C gas diffusion electrodes on the oxygen side and Pt-on-C on the hydrogen side. Fuel cells were built with the above mentioned electrodes and membranes. These cells were run to obtain fuel cell and electrolysis data. Data for a maximum of five regenerative cycles were obtained. The current-potential data in the regenerative electrolysis were characterized by a gradual decay with time. The fuel cell data were very stable. The membrane-electrode assemblies were found in very good condition, and no visible corrosion of electrodes was evident.  相似文献   

12.
The effects of different configurations and compositions of platinum and iridium oxide electrodes for the oxygen reaction of unitised regenerative fuel cells (URFC) are reported. Bifunctional oxygen electrodes are important for URFC development because favourable properties for the fuel cell and the electrolysis modes must be combined into a single electrode. The bifunctional electrodes were studied under different combinations of catalyst mixtures, multilayer arrangements and segmented configurations with single catalyst areas. Distinct electrochemical behaviour was observed for both modes and can be explained on the basis of impedance spectroscopy. The mixture of both catalysts performs best for the present stage of electrode development. Also, the multilayer electrodes yielded good results with the potential for optimisation. The influence of ionic and electronic resistances on the relative performance is demonstrated. However, penalties due to cross currents in the heterogeneous electrodes were identified and explained by comparing the performance curves with electrodes composed of a single catalyst. Potential improvements for the different compositions are discussed.  相似文献   

13.
In order to understand the origins of performance variations in unitized regenerative fuel cells (URFCs), bifunctional catalyst layers (BCLs) fabricated with two different methods, i.e., ink deposition on membrane or GDL, were designed in this paper. The performances of the two different methods were evaluated, and their reaction dynamics were measured by electrochemical impedance spectra. The different BCLs, caused by the different preparation processes, were found to influence the fuel cell performance. The cell potentials of the URFCs using platinum sprayed onto the gas diffusion layer (GDL) are above 0.100 V higher than those with platinum sprayed onto the membrane at 800 mA cm−2 in fuel cell (FC) mode. The mass transport resistances of the URFCs at different operation modes were also compared. It was proved that the platinum layer formed by applying platinum onto the GDL could prevent the cell from water flooding in FC mode. However, it was found that the cell performance changed slightly in water electrolysis mode with different BCLs. The electron conduction path was also found to be hindered by an IrO2 agglomerate, which led to a decrease in cell performance. The highest and lowest round-trip efficiencies of the URFC with different BCLs were 42.1% and 22.3%, respectively, at 800 mA cm−2.  相似文献   

14.
15.
A tubular microbial fuel cell   总被引:2,自引:0,他引:2  
Cell potential and power performance for tubular microbial fuel cells utilising manure as fuel are reported. The microbial fuel cells do not use a mediator, catalysts or a proton exchange membrane. The cell design has been scaled up to a size of 1.8 m in length using electrodes of 0.4 m2 in area. The cell does not require a strictly controlled anaerobic environment and has potential practical applications when adapted into the form of a helix allowing fuel to flow through it. The cell could be used for power generation in remote applications. The peak power density of the cell is over 3 μW cm −2 (30 mW m−2). The performance can be improved by a more effective design of the interface between the anode and cathode chambers.  相似文献   

16.
Oxygen evolution on PTFE/Nafion®-bound porous activated XC-72 carbon and on PTFE- and PTFE/Nafion®-bound Ebonex® has been studied, using RuO2/IrO2 catalysts. High activity was found for Ebonex®, but carbon, even when coated with Nafion, proved qquite unstable.  相似文献   

17.
This report documents the key technological progress made over last two decades in the field of development of integrated fuel processor for hydrogen generation. Studies on process optimization based on numerical simulation/calculation, mass and energy management, parametric adjustment have been reported. A number of these studies discuss the application of reforming process assisted by other technologies such as pressure swing adsorption and membrane separation to enhance the hydrogen productivity and/or purity. However, for such systems the extent of integration among and between components remains limited. Accordingly, the net efficiency is compromised due to the mass/heat transfer rate and reaction dynamics either in the individual units or the complete system. Process intensification technologies such as engineered catalysts, on-site heat production/removal and product purification can not only allow precise control of reaction and heat/mass transfer rates, but also help optimize the operation conditions, and, consequently, improve overall efficiency and mitigate the requirement for materials and capital investment. It seems that micro-scale technologies, possessing the typical characteristics of process intensification technologies, have potential for making the integrated fuel processor into practice.  相似文献   

18.
A multi-function compact chemical reactor designed for hydrocarbon steam reforming was evaluated. The reactor design is based on diffusion bonded laminate micro-channel heat exchanger technology. The reactor consists of a combustor layer, which is sandwiched between two steam reforming layers. Between the two function layers, a temperature monitor and control layer is placed, which is designed to locate the temperature sensors. The combustor layer has four individually controlled combustion zones each connected to a separate fuel supply. The reactor design offers the potential to accurately control the temperature distribution along the length of the reactor using closed loop temperature control. The experimental results show that the variance of temperature along the reactor is negligible. The conversion efficiency of the combustor layer is approximately 90%. The heat transfer efficiency from combustion layer to reforming layers is 65-85% at 873 K and 673 K, respectively. The heat transfer rate to the reforming layers is sufficient to support a steam reformation of propane at a rate of 0.7 dm3/min (STP) with a steam to carbon ratio of 2 at 873 K.  相似文献   

19.
介绍了可再生燃料电池的工作原理、结构组成、分类和国内外可再生燃料电池技术的研究状况及现阶段存在的主要技术问题,对可再生燃料电池在风/光电储能调峰中的应用进行了分析总结,并对其发展趋势进行了展望。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号