首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The texturization of monocrystalline silicon wafers using sodium carbonate solution has been investigated. This etching process has been evaluated in terms of the surface morphology and the reflectance value. The results show that for low concentration of sodium carbonate the increase of texturing time decreases the reflectance value because of the change in morphology from hillocks to pyramidal; on the contrary for intermediate and high concentrations the increase of time has a detrimental effect on texturization because it increases both the pyramid sizes and their non-uniform distribution. However, a good cell performance could be obtained by etching at high concentrations and short times.  相似文献   

2.
Tribasic sodium phosphate (Na3PO4·12H2O) was successfully introduced to texture monocrystalline silicon for the first time. A series of comparative experiments were made to indicate the dependence of hemispherical surface reflectance on the tribasic sodium phosphate (Na3PO4·12H2O) concentration, reaction temperature and etching time. Meanwhile, the effects of other agents, such as isopropyl alcohol (IPA), sodium hydroxide (NaOH) and bi-sodium hydrogen phosphate (Na2HPO4) on average reflectance were also investigated. The results showed that IPA and NaOH have great detrimental effects on texture, and the average reflectance slightly increased with the addition of Na2HPO4. On the basis of our experiments, it is concluded that the effect of phosphatidate (PO43−) or its compounds on the texturization is the same as that of the mixture of alkaline and IPA. Furthermore, this method is economical, has low pollution and good reproducibility. We feel that it is suitable for the large-scale production.  相似文献   

3.
We investigate a new texturization technique for crystalline silicon solar cells with sodium carbonate (Na2CO3) solutions. We show the dependence of the hemispherical surface reflectance on solution temperature, the etching time and the Na2CO3 concentration. Furthermore, we investigate what element in Na2CO3 solution influences the texturing for reducing the texturing time. As a result of experiments, we find it possible to get low reflectance in a shorter texturing time by the addition of NaHCO3. The size of texture becomes smaller by the addition of NaHCO3 but the etching rate does not change. We conclude carbonic ion and/or its compound seems to play an important role as the initiator of pyramidal structure. This texturing method is cost effective because there is no need of expensive IPA, and the surface reflectance is reduced sufficiently in a short time. This method is promising for a large-scale production of crystalline silicon solar cells.  相似文献   

4.
Two novel texture schemes for the front of a c-Si silicon wafer solar cell are presented. The “bipyramid” texture is of two inverted pyramids of similar sizes laid out in alternating order. The “patch” texture uses a checkerboard layout of blocks of parallel grooves, with the grooves of alternating blocks perpendicularly oriented to each other. We estimate that these textures, which almost fully trap light for the first six passes through the substrate, can deliver better optical performance than the standard inverted pyramid texture, especially in narrow-band applications.  相似文献   

5.
Texturization of mono-crystalline silicon for solar cell fabrication is still a key issue due to consumption of large amount of costly isopropyl alcohol (IPA) in conventional NaOH/KOH solution. The need of IPA arises due to the improvement in the uniformity of pyramidal structures and elimination of spots caused by bubbles sticking on the wafer surface during the texturization process. We investigated a new texturization technique for mono-crystalline silicon solar cells with tribasic sodium phosphate (Na3PO4, 12H2O) solution with much less amount of IPA. The proposed texturization method of this paper is cost effective due to reduction in the consumption of expensive IPA. The cost comparison of our novel texturization approach with conventional NaOH texturization has also been reported in this paper. We are reporting for the first time such a novel approach of using tribasic sodium phosphate for texturization of mono-crystalline silicon surface with which solar cells of efficiency 14–14.8% are fabricated with more than 90% yield.  相似文献   

6.
Reduction in optical losses in mono-crystalline silicon solar cells by surface texturing is one of the important issues of modern silicon photovoltaics. In order to achieve good uniformity in pyramidal structures on the silicon surface, a mixture of sodium hydroxide (NaOH) or potassium hydroxide (KOH) and isopropyl alcohol (IPA) is generally used during texturization of mono-crystalline silicon solar cell. However, due to the high cost of IPA, there is always a search for alternate chemical which plays the same role as IPA during texturization for industrial solar cell production. For a better texturization, the interfacial energy between silicon and ionized electrolyte of chemical solution should be reduced to achieve sufficient wettability of the silicon surface, which will enhance the pyramid nucleation. In this work, we have investigated the role of hydrazine mono-hydrate as a surface-active additive, which supplies OH ions after its dissociation. Our process cuts down the IPA consumption during texturing without any loss in uniformity of textured pyramids. We are the first to report the novel idea to add hydrazine mono-hydrate in NaOH solution for texturing mono-crystalline silicon surface to fabricate solar cells with more than 85% yield in the efficiency range of 14.5–15.3%.  相似文献   

7.
In this paper, we will show that efficiency of multi-crystalline silicon (mc-Si) solar cells may be improved by acid texturization. In order to enhance overall efficiency of mc-Si for solar-cell applications, the surface treatment of texturization with wet etching using appropriate solutions can improve incident light into the cell. Alkali etchant cannot produce uniformly textured surface to generate enough open circuit voltage (VOC) and high efficiency of the mc-Si due to the unavoidable grain randomly oriented with higher steps formed during etching process. Optimized acid etching conditions can be obtained by decreasing the reflectance (R) for mc-Si substrate below levels generated by alkali etching. Short-circuit current (ISC) measurements on acid textured cells reveal that current gain can be significantly enhanced by reducing reflection. The optimal acid etching ratio HF:HNO3:H2O = 15:1:2.5 with etching time of 60 s and lowering 42.7% of the R value can improve 112.4% of the conversion efficiency (η) of the developed solar cell. In order to obtain more detailed information of different defect region, high-resolution light beam induced current (LBIC) is applied to measure the internal quantum efficiency (IQE) and the lifetime of minority carriers. Thus, the acid texturing approach is instrumental to achieve high efficiency in mass production using relatively low-cost mc-Si as starting material with proper optimization of the fabrication steps.  相似文献   

8.
The paper presents the latest results of the polycrystalline wafer engineering result (POWER) silicon solar cell research (G. Willeke, P. Fath, The POWER silicon solar cell, Proceedings of the 12th EPVSEC, Amsterdam, 1994, pp. 766–768). Mono – as well as bifacially active semitransparent silicon solar cells have been created by forming perpendicularly overlapping grooves on the front and the rear side of a silicon wafer resulting in a regular pattern of holes. The developed very simple manufacturing process is fully compatible with an industrial production and uses POCl3-tube diffusion, PECVD silicon nitride as single ARC and screen-printing metallization. Maximum efficiencies of η=11.2% for monofacial POWER cells on 0.4 Ω cm Cz material with a transparency of 18.2% and η=12.9% for bifacial cells on 1 Ω cm Cz material with a transparency of 16% have been obtained. Results for multicrystalline (mc) semitransparent mono- and bifacially active silicon solar cells are also presented.  相似文献   

9.
A promising cost-effective way of converting sun light into electricity could be a solar cell realized in a thin monocrystalline silicon film, due to its potential to achieve cell efficiencies of more than 20% in a 20 μm thick film. A porous silicon layer transfer technique provides an opportunity to get monocrystalline films on low-cost substrates such as glass. This paper reviews various processes, which are being developed for the layer transfer using porous silicon as a sacrificial layer while reusing of starting silicon substrate. The four basic steps—porous silicon formation, active layer deposition, layer separation and transfer, and device fabrication—have been identified in layer transfer process. The processes have been categorized and compared on the basis of the sequence of steps used in individual processes.  相似文献   

10.
Reflection loss of silicon solar cells can be reduced by texturization of the surfaces. In this study, single- and multi-crystalline silicon substrates were treated with chlorine trifluoride (ClF3) to create honeycomb-textured structures. We investigated surface structures and optical properties of the textured surfaces. By the treatment with ClF3 gas, the reflectance of the textured surface without anti-reflection coating was obtained to be below 20% at wavelengths between 300 and 800 nm. The solar cells using the textured substrates were fabricated and their improved performances were demonstrated.  相似文献   

11.
This work describes a texturization method for monocrystalline silicon solar cells based on a mixture of sodium carbonate and sodium hydrogen carbonate solutions. A specific solution has been found that results in an optimal etching rate, the lowest surface reflectance and a homogeneous density of pyramidal structures on the silicon surface. The subsequent phosphorus diffusion with rapid thermal processes has been modified in order to drastically reduce the process time and, simultaneously, to obtain a high homogeneity of the sheet resistance values and improved photocarriers lifetimes. 100×100 mm solar cells with an efficiency of 15.8% have been obtained compared to an efficiency of 14.7% for the reference cell.  相似文献   

12.
Reduction of optical losses in monocrystalline silicon solar cells by surface texturing is one of the important issues of modern silicon photovoltaic. For texturization during commercial monocrystalline silicon solar cell fabrication, a mixture of NaOH or KOH and isopropyl alcohol (IPA) is generally used in order to achieve good uniformity of pyramidal structure on the silicon surface. The interfacial energy between silicon and electrolyte should be reduced in order to achieve sufficient wettability for the silicon surface which in turn will enhance the pyramid nucleation. In this work, we have investigated the role of hydrazine monohydrate as a surface-active additive, which supplies OH ions after dissociation. This cuts down the IPA consumption during texturing without any loss of uniformity of textured pyramid. We are probably the first group to report such a novel idea of using hydrazine monohydrate addition in NaOH solution for texturization of solar cell. We were able to fabricate monocrystalline silicon solar cells with more than 85% yield in the range of 14–15% efficiency.  相似文献   

13.
This paper reports a novel approach on the surface treatment of monocrystalline silicon solar cells using an inorganic chemical, sodium hypochlorite (NaOCl) that has some remarkable properties. The treatment of contaminated crystalline silicon wafer with hot NaOCl helps the removal of organic contaminants due to its oxidizing properties. The objective of this paper is to establish the effectiveness of this treatment using hot NaOCl solution before the saw damage removal step of the conventional NaOH texturing approach. A comparative study of surface morphology and FTIR analyses of textured monocrystalline silicon surfaces with and without NaOCl pre-treatment is also reported. The process could result in a significant low cost approach viable for cleaning silicon wafers on a mass production scale.  相似文献   

14.
The majority of industrial monocrystalline silicon (c-Si) wafer solar cells are alkaline textured (at least the illuminated surface) to reduce reflection and increase absorption of incident light. Therefore, understanding the influence of front pyramid heights on the solar cell parameters is essential for further improving cell efficiency. In this work we report the impact of pyramid height on the performance of inline-diffused c-Si solar cells. Three alkaline texture processes with potassium silicate additives are optimised to result in homogeneous coverage of pyramids. By modifying the process, surface textures with small (∼5 μm maximum), medium (∼6 μm maximum) and large (∼8 μm maximum) pyramid heights are formed. The impact of pyramid size on cell parameters is experimentally studied using industrial-grade 156-mm pseudo-square p-type Czochralski wafers. It is found that within the pyramid size range studied here, there is no significant variation in effective minority carrier lifetime, reflectance, open-circuit voltage or short-circuit current. However, fill factor and hence efficiency is significantly impacted by pyramid size. While cells in all three groups demonstrate high fill factor (>79%), it is shown that an average fill factor gain of up to 1% absolute can be achieved by using the best-suited texture process.  相似文献   

15.
This paper presents the results of an experimental study regarding the increase in the efficiency of the silicon solar cells by texturing the front surface. Designing, patterning and surface etching processes led to refined structures with very low losses of the incident optical radiation. Photolithography has been used to generate patterns (disc hole) through the silicon dioxide layer grown at the beginning on silicon wafers. The holes (4 μm in diameter) have been uniformly distributed on the entire surface (2×2) cm2 and the distance between the hole centres was determined to be 20 μm. Semispherical walls have been defined in holes by isotropic etching up to join together of the wells.  相似文献   

16.
Multicrystalline silicon solar cells with porous silicon emitter   总被引:3,自引:0,他引:3  
A review of the application of porous silicon (PS) in multicrystalline silicon solar cell processes is given. The different PS formation processes, structural and optical properties of PS are discussed from the viewpoint of photovoltaics. Special attention is given to the use of PS as an antireflection coating in simplified processing schemes and for simple selective emitter processes as well as to its light trapping and surface passivating capabilities. The optimization of a PS selective emitter formation results in a 14.1% efficiency mc-Si cell processed without texturization, surface passivation or additional ARC deposition. The implementation of a PS selective emitter into an industrially compatible screenprinted solar cell process is made by both the chemical and electrochemical method of PS formation. Different kinds of multicrystalline silicon materials and solar cell processes are used. An efficiency of 13.2% is achieved on a 25 cm2 mc-Si solar cell using the electrochemical technique while the efficiencies in between 12% and 13% are reached for very large (100–164 cm2) commercial mc-Si cells with a PS emitter formed by chemical method.  相似文献   

17.
Surface texturing of silicon can reduce the reflectance of incident light and hence increase the conversion efficiency of solar cells. Comparatively lesser concentrated (10%) standard alkaline (NaOH/KOH) solution does not give good textured multi-crystalline silicon (mc-Si) surface, which could give satisfactory open-circuit voltage. This is due to grain-boundary delineation with steps formed between successive grains of different orientations. In this work an attempt has been made to obtain a well-textured mc-Si surface through three different approaches. The first two are with two different types of acid solutions and the third with concentrated alkaline NaOH. Solutions of HF–HNO3–CH3COOH/H2O system with different concentrations of HF and HNO3 were used for texturing. The results on the effect of texturing of these three solutions on the surface morphology of very large area (125 mm×125 mm) mc-Si wafer as well as on the performance parameters of solar cell are presented in this paper. Attempts have been made to study extensively the surface morphologies of mc-Si wafers in two effective regions of the isoetch curves of the HF:HNO3:diluent's system. Also we studied the reflectance, uniformity, spectral response, short-circuit current, open-circuit voltage, fill factor and dark current–voltage of the cells fabricated using wafers textured with the three different methods. Short-circuit current of the solar cells fabricated using acid-textured wafers were measured to be in the range of 4.93 A. This value is 0.37 and 0.14 A higher than the short-circuit current values measured in the cells fabricated with isotextured and alkaline-textured wafers, respectively.  相似文献   

18.
Amorphous silicon solar cells   总被引:1,自引:0,他引:1  
The perfectioning of the deposition techniques of amorphous silicon over large areas, in particular film homogeneity and the reproducibility of the electro-optical characteristics, has allowed a more accurate study of the most intriguing bane of this material: the degradation under sun-light illumination. Optical band-gap and film thickness engineering have enabled device efficiency to stabilize with only a 10–15% loss in the as-deposited device efficiency. More sophisticated computer simulations of the device have also strongly contributed to achieve the highest stable efficiencies in the case of multijunction devices. Novel use of nanocrystalline thin films offers new possibilities of high efficiency and stability. Short term goals of great economical impact can be achieved by the amorphous silicon/crystalline silicon heterojunction. A review is made of the most innovative achievements in amorphous silicon solar cell design and material engineering.  相似文献   

19.
150-mm layer transfer for monocrystalline silicon solar cells   总被引:1,自引:0,他引:1  
We report on recent improvements concerning the transfer of monocrystalline silicon layers to plastic substrates for flexible solar cell applications. Finite element numerical modeling of the etching current density distribution allows for optimizing our electrochemical etching setup for separation layer formation. By modifying the setup according to the simulation results, we are now able to transfer 25 μm thick monocrystalline silicon sheets with up to 150 mm in diameter.  相似文献   

20.
Double porous silicon (d-PS) layers formed by acid chemical etching on a top surface of n+/p multi-crystalline silicon solar cells were investigated with the aim to improve the performance of standard screen-printed silicon solar cells. First a macro-porous layer is formed on mc-Si. The role of this layer is texturization of surface. Next, the cells have been manufactured using standard technology based on screen-printing metallization. Finally, a second mezo-porous layer in n+ emitter of cell has been produced. The role of this PS layer is to serve as an antireflection coating. In this way, we have obtained d-PS layers on these solar cells. The paper present observation of d-PS microstructure with SEM as well as measurements of its effective reflectance at the level of 2.5% in the 400–1000 nm length wave range. The efficiency of the solar cells with this structure is about 12%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号