首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An efficient finite element method is presented for calculating the stress intensity factors (KI and KII) and the weight functions for mixed-mode cracks with one virtual crack extension. The computational efficiency is enhanced through the use of singular elements and the application of colinear virtual crack extension (VCE) technique to symmetric mesh in cracktip neighborhood. This symmetric mesh in crack-tip vicinity permits the analytical separation of strain energy release rate into GI for Mode I and GII for Mode II for the mixed fracture problems with the colinear virtual crack extension.

Rice's displacement derivative representation of weight function vector for symmetric crack has been extended to the mixed fracture mode at nodal location (xi,yi) with crack length (a) and inclination angle (β) as hI(II)(xi, yi, a, β) = (H/2KI(II)(∂UI(II)(xi, yi, a, β/∂a).

This equation permits explicit determination of weight functions for the entire structure of a given asymmetric crack geometry with colinear VCE technique. The explicit weight functions for mixed fracture mode depend strongly on the constraint conditions. The method of obtaining the required stress intensity factors of a given asymmetric crack geometry, from the weight function concept under the selected constraint conditions, which are different from constraint conditions used in the available weight functions for the same crack geometry, is also presented in this paper. This is accomplished by combining the predetermined explicit weight functions with the self-equilibrium forces at their application locations. These self-equilibrium forces include both the applied surface tractions and the reaction forces induced from the constraint conditions.  相似文献   


2.
Due to the oscillatory characteristics of stresses near interface crack tips, the stress intensity factor Ki, i = I, II, III, should be modified and the energy release rate Gi, i = 1, 2, 3, of each fracture mode calculated by the virtual crack closure method may not exist. Based upon a near-tip solution for interface cracks between dissimilar anisotropic media, a proper definition for the stress intensity factors and energy release rates for general anisotropic bimaterial interface cracks is provided in this paper, which is applicable for the delaminated composites. Moreover, this definition can be reduced to the classical definition for a crack tip in homogeneous media when the two materials become the same. A simple quadratic relation between Ki and Gi is derived, which is further reduced explicitly for orthotropic bimaterials. The influence of fiber orientation and the coupling among opening, shearing and tearing mode fracture are studied numerically. The results show that the classical stress intensity factors and energy release rates are still the dominant stress intensity and energy release rate of the mixed mode condition induced by the interface.  相似文献   

3.
Subcritical growth and coalescence of two collinear cracks of different lengths were investigated using small Knoop indentation cracks in glass. Indentation cracks subjected to bending in water showed anomalous crack growth in terms of the stress intensity factor, KI. The crack growth velocity, dc/dt, was initially high, decreased and thereafter increased with increasing KI. The effective stress intensity factor, KI,eff, was calculated by adding a term describing the state of residual stress to explain this anomalous growth. Before crack coalescence, a large crack showed a crack velocity higher than expected from the coalescent crack. The coalescent crack velocity increased with KI,eff and the slope of dc/dtKI,eff curves differed from that for a single crack, depending on the crack length.  相似文献   

4.
In this paper a unique criteria, crack surface relative displacement, is used to evaluate mixed-mode (mode I and mode II) fracture mechanics problems. Using a conic-section simulation of a crack surface, relationships among the energy release rate G, the stress intensity factors (K1 and K2), and crack surface relative displacement are developed. Because the crack surface relative displacement criterion makes direct use of the displacements on the crack surface, instead of the stress field in the region of the crack tip, it simplifies numerical analysis of crack problems. A finite element model of a slant-center-cracked plate is employed to demonstrate the applicability of crack surface relative displacement to mixed-mode problems. The numerical results obtained agree well with analytical solutions. In addition, it is illustrated that similar to K1, K2, and G (J in LEFM), crack surface, relative displacement can serve as a fracture criterion for general mixed-mode I and II fracture mechanics problems.  相似文献   

5.
An efficient approach using the analytically decoupled near-tip displacement solution for bimaterial interface cracks presented in this paper involves: (1) the calculation of the decoupled strain energy release rates G I and G II associated respectively with the decoupled stress intensity factors K I and K II and (2) the extension of Rice's displacement derivative representation of Bueckner's weight function vectors beyond the homogeneous media. It is shown that the stress intensity factors for a bimaterial interface crack predicted by the present approach agree very well with those solutions available in the literature. The computational efficiency is enhanced through the use of singular elements in the crack-tip neighborhood.As reported in the homogeneous case, the calculated weight function for a bimaterial interface crack is load-independent but depends strongly on geometry and constraint conditions. Due to the coupling nature of the stress intensity factors of a bimaterial interface crack, the invariant characteristics of the dimensionless weight function vectors are different from those of a crack in homogeneous material. In addition, the elastic constants of two constituents can significantly alter the weight function behavior for a cracked bimaterial medium.Due to the load-independent characteristic of the weight functions, the stress intensity factors for a bimaterial interface crack can be obtained accurately and inexpensively by performing the sum of worklike products between the applied loads and the weight functions for the cracked bimaterial body under any loading conditions once the weight functions are explicitly predetermined. The same calculation can also be applied for the identical cracked bimaterial medium with different constraint conditions by including the self-equilibrium forces that contain both the external loads and the reaction forces induced at the constraint locations. Moreover, the physical interpretation of the weight functions can provide a guidance for damage tolerant design application.  相似文献   

6.
Stress corrosion crack growth rates are measured at sveral stress intensity levels for low-tempered 4340 steel in 0.1N H2SO4 solution. The characteristics of the growth rates are divided into three regions of stress intensity factors: Region I near K1SCC; Region III near unstable fracture toughness, K1SC; and Region II, which lies between the two. K1SCC is the value of K at which no crack growth can be detected after 240 hr.

In order to explain these experimental results, the crack initiation analysis reported in a previous paper is extended to the growth rates. A detached crack initiates and grows at the tip of an already existing crack. When the detached crack reaches the tip of the main crack, the process repeats as a new existing crack.

A relationship between crack growth rate, v, and stress intensity factor, K, is obtained as a function of b/a and a = b + d, where b is the distance from the tip of the main crack to the detached crack, and d is the ydrogen atom saturated domain.

The experimental data are in good agreement with the theoretical values in Region II when a = 0.02 mm, b/a = 0.8, c1/c0 = 2.8 for 200°C tempered specimens and a = 0.015 mm, b/a = 0.7, c1/c0 = 3.0, ρb = 0.055 mm for 400°C tempered specimens, where ρb is a fictitious notch radius. The plateau part in Region II for 400°C tempered specimens is also successfully explained by the present theory. For Region III, the value of b/a will be almost equal to 1 because v → ∞ for b/a → 1. On the other hand, for Region I, b/a will be zero, since the value of v becomes negligibly small and no crack growth is observable.  相似文献   


7.
A general method is presented for determining mixed-mode stress intensity factors KI and KII from isochromatic fringes near the crack tip. The method accounts for the effects of the far-field, non-singular stress, σox. A non-linear equation is developed which relates the stress field in terms of KI, KII, and σox to the co-ordinates, r and θ, defining the location of a point on an isochromatic fringe of order N.

Four different approaches for the solution of the non-linear equation are given. These include: a selected line approach in which data analysis is limited to the line θ = π and the K---N relation can be linearized and simplified, the classical approach in which two data points at (rm, θm) are selected where rm/θ = 0; a deterministic method where three arbitrarily located data points are used; and an over-deterministic approach where m (>3) arbitrarily located points are selected from the fringe field.

Except for the selected line approach, the method of solution involves an iteractive numerical procedure based on the Newton-Raphson technique. For the over-deterministic approach, the method of least squares was employed to fit the K-N relation to the field data.

All four methods provide solutions to 0.1% providing that the input parameters r, θ, and N describing the isochromatic field are exact. Convergence of the iterative methods is rapid (3–5 iterations) and computer costs are nominal. When experimental errors in the measurements of r and θ are taken into consideration, the over-deterministic approach which utilizes the method of least squares has a significant advantage. The method is global in nature and the use of multiple-point data available from the full-field fringe patterns permits a significant improvement in accuracy of KI, KII, and σox determinations.  相似文献   


8.
The classical problem of uniform heat-flow disturbed by an insulated penny-shaped crack is solved in the context of micropolar elasticity. The mode II stress intensity factor, KII is found to depend on two new non-dimensional parameters N and τ − N is a measure of the coupling of the displacement field with the microstructure or the medium (0 N √2) and τ is the ratio of a material characteristic length to the crack radius. KII remains higher than its classical value when N > 0, τ > 0 and attains the classical value as N and τ vanish. A closed-form expression to KII is obtained in the physically important limiting case of τ → 0 with N fixed. In this limit the relative increment in KII, over its classical value, is found to be (1 − v')N2 where v' is the micropolar Poisson's ratio.  相似文献   

9.
Corrosion fatigue crack growth tests have been carried out at various stress ratios for a low alloy steel SNCM 2 and type 304 stainless steel.

Measurements of the effective stress intensity factor range ratio U were performed to explain the effect of stress ratio R.

The corrosive environment decreased da/dN at R = 0.1, 0.4 and little affected da/dN at R = 0.9 for SNCM 2 and increased da/dN at all R ratios for SUS 304.

It was confirmed that there exists a threshold stress intensity factor ΔKthCF in 3% NaCl solution for both materials tested.

The corrosive environment decreased ΔKthCF for all conditions tested except at R = 0.1 and 0.4 for SNCM 2, where ΔKthCF-values were nearly equal to ΔKth-values in air. ΔKthCF/ΔKth was 0.6 at R = 0.9 for SNCM 2 and 0.8, 0.5 and 0.7 at R = 0.1, 0.7 and 0.9 for SUS 304, respectively.

It was shown that the complicated effect of stress ratios on crack growth for SNCM 2 can be explained using effective stress intensity factor ΔKeff.  相似文献   


10.
Based on the results of acoustic emission monitoring and electron microscope observing, the author of the paper proposes a mechanics model for compressed cast iron specimen—a column with internal inclined crack. Then numerical simulations for the model are made and the distributions of SIF Ki (i = I, II, III) along the crack front are obtained and so the fracture mechanism of suen kind of specimen is found. Finally, according to the theory of strain energy density factor, the critical fracture angle is obtained by using the known SIF. When the friction between the crack surfaces is taken into account, the fracture angle calculated agrees well with experimental results of compressed cast iron in a general laboratory.  相似文献   

11.
A stochastic model describing the crack evolution and scatter associated with the crack propagation process has been built on the basis of the discontinuous Markovian process. The evolution and scatter are identified in terms of constant probability curves whose equation is derived as In Pr(i) = B(eKI0eKi), iI0, where i is the number of cycles, B and K are crack-length-dependent variables, Pr(i) is the probabiliity of the crack being at position r along the fracture surface after i cycles elapse and I0 is the minimum number of cycles required for the crack to advance from one position on the fracture surface to the next. The validity of the model is established by comparing the crack growth curves generated for Al 2024-T3 at a specific loading condition with those experimentally obtained.  相似文献   

12.
A microcomputer-based system for the measurement of fatigue crack growth da/dn versus cyclic stress intensity factor ΔK data using compact-tension test specimens is described. The procedure has been developed to allow automatic measurement of crack growth rate under any specified combination and sequence of load conditions, i.e. ΔK and R (stress ratio) and includes the capability of establishing the threshold cyclic stress intensity factor ΔK0. Crack extension measurement is effected from the elastic compliance evaluated from the AC component of the load and displacement signals to an accuracy of -3 μm every 1000 load cycles. Results from a typical low-alloy-steel rotor forging are presented to illustrate the use of the system.  相似文献   

13.
Irwin's solution of the stress intensity factor KI for an embedded elliptical cracks was extended to solve for KI for semi-elliptical surface cracks in finite plates. A double series was set up to express the displacement of the crack surface, and the unknown coefficients of the series were determined by the crack surface displacements of two dimensional edge cracks and center cracks. The maximum displacement was determined with an energy method. The results reflected the influence of both the relative crack depth a/t and the relative crack length c/W. The cases in which elliptical axis ratio a/c > 1 were also included.  相似文献   

14.
The application of the fracture mechanics approach to time-dependent high temperature crack growth has been reviewed. Available data on several structural alloys indicate that depending on the environmental sensitivity and creep ductility of the material, creep crack growth can be characterized by either linear elastic parameter, K, non-linear elastic-plastic parameter, J*-integral, or reference stress, σref. In particular for materials that are significantly sensitive to environment, K can adequately characterize the growth rate, and for materials that are significantly creep ductile, σref can be used to predict creep life of a cracked body. Finally, for materials that are relatively ductile and wherein crack growth occurs predominantly by a deformation process, J* integral appears to be the characterizing parameter for the growth rate. Data for several materials indicate that under steady state crack growth conditions, there may be a unique growth rate-J* relation independent of temperature and material. This would have a profound impact in terms of the utility of fracture mechanics approach to predict creep crack growth rate and needs to be examined further. Conditions under which K, J* or σref is applicable are discussed in detail.  相似文献   

15.
A computational method is described for the determination of ΔKb, corresponding to a fatigue crack growth rate of b/cyc, where b is the Burgers vector for a monolithic metal alloy. ΔKb is found to be numerically equal to E√b for the case of closure-free crack growth behavior. Given that the closure-free FCP rate of many monolithic metals varies with ΔK3, the growth rate of metal alloys at ΔK ΔKb is given by da/dN = (ΔK/E)3(1/√b. Excellent agreement is found between experimental and computed FCP data for the case of monolithic metal alloys. The limits of these relations for metal-matrix composites and ceramics are discussed.  相似文献   

16.
Vickers microhardness indentations of 10 μm (001) oriented epilayers of AlxGa1−xAs on GaAs substrates have been utilized to evaluate the hardness Hv, the internal stress, and the fracture toughness KIc of the layers as a function of their composition parameter x. The hardness Hv varies linearly according to: (6.9-2.2x) GPa and KIc increases linearly with x according to: K1c = (0.44+1.30x) MPa m1/2. The influence of the substrate on these measurements was found to be negligible for the layer thickness (10 μm) and the indentation load (0.25 N) used, disregarding internal stresses.

Internal film stresses were evaluated by the bimorph buckling method, and were found to depend on the composition parameter according to σ = 0.13x GPa. These stresses did not notably affect the Hv measurements, but for KIc corrections as large as 25% had to be made.

The radial cracks observed were of the shallow Palmqvist type. In contradiction to previous reports on this type of cracking, it was found to initiate during unloading, not during loading, and a physical explanation for this deviation is given. No deep radial/median cracks were observed. It was found important to use expressions based on the correct crack geometry in the KIc evaluation. Also, a simple theory for the influence of internal stresses on the KIc results has been developed.  相似文献   


17.
Room temperature fatigue crack growth rate data were generated for Ni-Mo-V (ASTM A469, Cl-4), Cr-Mo-V (ASTM A470, Cl-8) and Ni-Cr-Mo-V (ASTM A471, Cl-4 and a 156,000 psi yield strength grade) rotor forging steels. Testing was conducted with WOL type compact toughness specimens and the results presented in terms of fracture mechanics parameters. Data show that the Ni-Cr-Mo-V steels exhibit slower fatigue crack growth rates at a given stress intensity range (ΔK) than do the Ni-Mo-V steels. In addition, the Cr-Mo-V steel was found to exhibit slower growth rates than the other alloys at ΔK levels below 40 ksi √in but somewhat foster rates at ΔK levels in excess of 45 ksi √in. The fatigue crack growth rate properties of the alloys studied conform to the generalized fracture mechanics crack growth rate law where da/dN = C0ΔKR. It was noted that the fatigue crack growth rate parameters n and C0 tend to decrease and increase, respectively, with increasing material toughness, Kic.  相似文献   

18.
The fracture toughness of a 30 CrMnSiA steel plate of three thicknesses (10,8 and 5 mm) and three widths (110,80 and 56 mm) has been investigated by using surface-flaw method under room temperature. It is not easy to compute the value of KIE by the maximum applied load. But the values of KIE and KIC could be obtained easily, if the computation of the conditional applied load P10 and P5 based on the relative effective extension Δa/a0 = 10% and 5% were adopted, together with the conditions of Pmax/P10 1.2 and Pmax/P5 1.3. The KR — Δa curve, i.e. the resistance-curve described by the parameter K, has been plotted. The values of KIC and KIE are then the resistances corresponding to the real extensions of flaws of Δ/a0 = 2 and 7%, respectively. These values so obtained are in good agreement with the computed values of KIC and KIE by using the conditional applied loads. The values of KIC and KIE so obtained are also in agreement with the value of KIC converted from the J-integral and the effective value of KIE computed by the maximum applied load, respectively.

An approximate relation between KIC and KIE has been found to be: KIC = (0.85˜0.95)KIE.

The requirements for the dimensions of specimens are: Thickness of plate: B 1.0(KIC0.2)2 or 1.25(KICσ0.2)2]; Width of plate: 8 W/B 10, 4 W/2c 5; Effective length: l 2W.  相似文献   


19.
A finite element program was developed which combines the analytical crack tip solution with a conventional finite element analysis and evaluates various crack tip parameters as part of the solution. This program was used to analyze cracked specimens subjected to mixed mode loading. The importance of retaining the second term of the series expansion for local stress, a contribution which is independent of the distance from the crack tip, was demonstrated. It was first shown analytically that the presence of a load applied parallel to the crack reveals itself only through this constant second term, which vanishes only for specific loading conditions. The results of the numerical analysis demonstrate that the stress intensity factor KI is independent of the load applied parallel to the crack only when this term is included in the analytical crack tip solutions. Failure to include the constant term has the effect that KI varies with the horizontal load. The parameter K11 is independent of this load in both cases. This indicatesonce again that it is this constant term which accounts solely and entirely for the presence of a load applied parallel to the crack.  相似文献   

20.
The constraint based fracture mechanics methodology, JA2 method, has been used to interpret cleavage fracture recently. In all previous studies, the constraint parameter A2 was determined by stresses analytically calculated from finite element analyses (FEA). In the current paper, it is first demonstrated that A2 can be measured during a fracture test using the crack tip opening displacement (CTOD). A single-edge-notched specimen under bending (SENB) is used to compare the A2 values determined from δ5 displacement and the stress components. Finally, cleavage fracture toughness values for A533-B reactor pressure vessel (RPV) steel at −40°C obtained from test programs at Oak Ridge National Laboratory (ORNL) and the University of Kansas (KU) are interpreted using the JA2 analytical model. Particular emphasis is placed on using the A2 determined from CTOD to characterize the fracture event. It is demonstrated that the effects of crack depth (shallow vs deep) and specimen size (small vs large) on the fracture toughness from the test programs can be interpreted and predicted using J and the constraint level A2 measured from the displacement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号