首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyroglutamic acid is present in high amounts (0.5g/ 100g) in many cheese varieties-and particularly in extensively ripened Italian cheeses such as Grana Padano and Parmigiano Reggiano. An in vivo model system for cooked mini-cheese production and ripening acceleration was set up to demonstrate the ability of thermophilic lactic acid bacteria, used as a starter, to produce pyroglutamic acid (pGlu). In mini-cheeses stored at 38 and 30 degrees C for up to 45 d, all starters tested produced different amounts of pGlu. In descending order of pGlu production, the bacteria analyzed were: Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and Lactobacillus delbrueckii subsp. lactis. Evidence for the presence of glutamine to pGlu cyclase activity in lactic acid bacteria was provided. Cell lysates obtained from cultures of L. helveticus, L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, and S. thermophilus showed the ability to cyclize glutamine to pGlu, resulting in processing yields from 1.4 to 30.3%, depending on the subspecies. Formation of pGlu from free glutamine appeared to be similar to that observed using a glutamine-glutamine dipeptide substrate. Under the experimental conditions applied, pGlu aminopeptidase activity was only detected in L. helveticus. Thus, pGlu formation in long-ripened cooked cheese may depend on the activity of thermophilic lactic acid bacteria.  相似文献   

2.
3.
We made Milled curd Cheddar cheese with Lactococcus starter and an adjunct culture of Lactobacillus helveticus I or Lactobacillus casei T subjected to different attenuation treatments: freeze shocking (FS), heat shocking (HS), or spray drying (SD). Proteolysis during cheese ripening (0 to 6 mo), measured by urea-PAGE and water-soluble nitrogen, indicated only minor differences between control and most adjunct-treated cheeses. However, there were significant differences in the effect of Lactobacillus adjuncts on the level of free amino nitrogen in cheese. Cheeses made with FS or HS Lb. helveticus adjunct exhibited significantly greatest rates of free amino group formation. Lipolysis as measured by total free fatty acids was consistently highest in adjunct-treated cheeses, and FS Lb. casei-treated cheeses showed the highest rate of free fatty acid formation followed by FS Lb. helveticus treated cheeses. Mean flavor and aroma scores were significantly higher for cheeses made with Lb. helveticus strain. Freeze-shocked Lb. helveticus-treated cheeses obtained the highest flavor and aroma scores. Sensory evaluation indicated that most of the adjunct-treated cheeses promoted better texture and body quality.  相似文献   

4.
In hard cooked cheeses, any interactions between the thermophilic starters as they grow during the cheese-making are critical, since they modify bacterial growth kinetics and acidification kinetics, so affecting the ripening process and the final characteristics of the cheese. Twenty-four experimental hard cooked cheeses were made under controlled conditions, the milk being inoculated with various combinations of thermophilic strains of Streptococcus thermophilus, Lactobacillus helveticus and Lactobacillus delbrueckii. Over the first day of manufacturing we recorded a wide range of different growth kinetics for each starter species used, and a wide range of pH kinetics, depending on the starter combination. Most of the bacterial variability could be statistically explained by the nature, quantity, and/or presence or absence of the different strains inoculated. Four main interactions between the three species were evidenced during cheese-making. There was antagonism between L. helveticus and L. delbrueckii. The lactobacilli had a positive effect on S. thermophilus, which was reciprocal for L. helveticus. L. helveticus had a negative effect on S. thermophilus cultivability. And the combination of S. thermophilus inoculated in large quantities and L. helveticus strain H2 had a negative effect on the growth of the L. delbrueckii strain D2. While the positive effect of L. delbrueckii on S. thermophilus probably corresponds to interactions in milk that have already been described and published, the other interactions were hitherto unknown. These interactions are of major importance for the growth kinetics of streptococci and thermophilic lactobacilli during cheese-making.  相似文献   

5.
In this paper, we describe the effect of the addition of pregastric lipase on the composition and sensory properties of Idiazabal cheese. Free fatty acids (FFA), partial glycerides, free amino acids (FAA), gross composition and sensory characteristics were determined at different ripening times in cheeses manufactured with three different amounts of commercial animal lipase or with lipase-containing artisanal lamb rennet paste. The addition of lipase increased the content of total FFA, particularly of short-chain FFA, and that of total partial glycerides in cheeses. Unexpectedly, lipase utilization significantly affected total FAA concentration, which decreased in cheeses elaborated with high lipase amount. In general, Val, Glu and Leu were the major FAA, and their concentrations depended, mainly, on ripening time. Lipase addition had significant influence on the sensory characteristics of the cheeses, increasing scores for most of the flavour and odour attributes of the cheese. Principal component analysis (PCA) was done including dry matter, FFA, FAA, partial glycerides and odour and flavour attributes of the cheeses. It indicated that aroma and flavour parameters of Idiazabal cheese and the content of short-chain FFA and diglycerides were highly correlated to first principal component (PC1), while texture parameters, compositional variables and FAA were correlated to the second principal component (PC2).  相似文献   

6.
高鑫  张亮  李博 《中国酿造》2015,34(8):77
以不同发酵剂使用量制作了一种硬质蒙古干酪,对干酪成熟过程中的风味变化和微生物多样性进行了研究。当发酵剂使用量为1.0 g/L原料乳时,挥发性风味化合物的组分更为丰富,风味更加均匀适中,具有更好的风味体验。在干酪成熟早期,嗜热链球菌和保加利亚乳杆菌生长趋势相同,但到中后期,嗜热链球菌生长速度趋缓,而保加利亚乳杆菌生长速度相对较快。  相似文献   

7.
乳酸菌发酵制备大豆奶酪豆坯的工艺研究(英文)   总被引:1,自引:0,他引:1  
采用3种乳酸茵干酪乳杆菌(LC)、瑞士乳杆菌(LH)和干酪乳杆菌鼠李糖亚种6013(LR)和葡萄糖酸内酯(GDL)凝固豆乳制备豆坯,并对其质构和风味进一步改善。在6h的凝乳发酵中可以发现LC+LH样品中发酵剂生长良好,豆孔pH下降比LC+LH+LR样品要多。GDL的添加可以促进发酵剂生长,降低豆乳pH,但是它对豆坯的质构的改善并不明显。在GDL+LH+LC+LR制备的豆坯样品中,检测到7种提供风味的和另外11种不同种类不同含量的游离氨基酸(FAA),同时,该样品的脂肪酸(FA)情况也发生显著变化(C18:3.C20:0,C20:1和C22:0除外)。除了10种常规大豆脂肪酸外,C22:1和C24:0也被检测到。后熟过程中这些游离氨基酸和脂肪酸的变化将会导致大豆奶酪质构和风味的改善和提高。从质构和风味上讲,LC+LH制备的豆坯是最好的,其次是LC+LH+GDL制备的豆坯。  相似文献   

8.
Intracellular peptidases of Lactobacillus helveticus may play a major role in the proteolysis of Swiss cheeses, provided that they are released through bacterial lysis. Experimental Swiss cheeses were manufactured on a small scale from thermized and microfiltered milk using as starters (in addition to Streptococcus thermophilus and Propionibacterium freudenreichii) one of two Lb. helveticus strains, ITGLH1 and ITGLH77, which undergo lysis to different extents in vitro. All the cheeses were biochemically identical after pressing. The viability of Lb. helveticus ITGLH1 and ITGLH77 decreased to a similar extent (96-98%) while in the cold room, but the concomitant release of intracellular lactate dehydrogenase in cheeses made with strain ITGLH1 was 5-7-fold that in cheeses made with ITGLH77. Protein profiles and immunoblot detection of the dipeptidase PepD confirmed a greater degree of lysis of the ITGLH1 strain. Free active peptidases were detected in aqueous extracts of cheese for both strains, and proteolysis occurred principally in the warm room. Reversed-phase HPLC revealed a more extensive peptide hydrolysis for ITGLH1, which was confirmed by the greater release of free NH2 groups (+33%) and free amino acids (+75%) compared with ITGLH77. As the intracellular peptidase activities of ITGLH1 and ITGLH77 have previously been shown to be similar, our results indicated that the extent of lysis of Lb. helveticus could have a direct impact on the degree of proteolysis in Swiss cheeses.  相似文献   

9.
The aim of this study was to determine the content of free amino acids (FAA) and their ratio in ewe's milk cheese from the island Krk during its ripening. FAA content was determined by reversed phase HPLC (RP‐HPLC) of cheese aqueous/ethanol extracts after FAA were transformed into their 6‐aminoquinolyl‐N‐hydroxysuccinimidyl carbamate derivatives. Their concentration increased during ripening, reaching the value of 5% in cheese dry matter. The dominant FAA were glutamic acid>leucine>valine>aspartic acid>phenylalanine>serine>proline, and higher content of nonessential vs essential FAA was revealed. Krk cheese has, in relation to other cheeses, higher values for glutamic acid/leucine, glutamic acid/phenylalanine, glutamic acid/proline and smaller values for leucine/aspartic acid, valine/aspartic acid, phenylalanine/aspartic acid ratios, while other ratios are comparable to those of other hard ovine cheeses.  相似文献   

10.
Lactobacillus plantarum 18A, Lactobacillus helveticus 2B, Lactobacillus delbrueckii subsp. lactis 20F, Streptococcus thermophilus 22C, Enterococcus faecalis 32C and Enterococcus durans 16E were the most acidifying strains within 146 isolates for natural whey starters. The effect of media and temperature on 2 autochthonous multiple strain cultures (AMSI: 18A, 2B, 20F and 22C, 32C and 16E and AMSII: 18A, 2B, 20F and 22C) was studied. Genomic analysis showed a constant cell numbers for AMSII during 16 days of propagation in whey milk. Mozzarella cheese was made by using AMSII, commercial starter (CS) or citric acid (DA). Compared to other cheeses, the DA had a lower level of protein, ash, Ca, free amino acids and a higher level of moisture. Based on confocal laser scanning microscopy analysis, AMSII cheese showed the lowest microstructural variations during the period of storage compared to other cheeses. All the sensory attributes were scored highest for AMSII cheese. ASMII extend the shelf-life to ca. 12-15 days instead of the 5-7 days of traditional high-moisture Mozzarella cheese.  相似文献   

11.
谢爱英  陈祎  党亚丽  周玲 《食品科学》2014,35(15):188-192
以0、30、60、90 d促熟干酪中生物胺(组胺、色胺、苯乙胺、尸胺、酪胺)和游离氨基酸含量为指标,研究了添加复合处理发酵剂对干酪产生游离氨基酸和生物胺量的影响。结果表明:不同处理发酵剂添加量对各种生物胺产生的影响不同;添加处理发酵剂干酪中生物胺和游离氨基酸含量增加,其含量随着复合处理发酵剂添加量增加而增加。  相似文献   

12.
The use of an autochthonous starter culture made up by Streptococcus thermophilus, Lactococcus lactis subsp. lactis, Lactobacillus plantarum and Lactobacillus casei in the production of experimental Pecorino Sardo Dolce PDO resulted in a high presence of presumptive mesophilic lactococci and lactobacilli, ~10 log colony‐forming units (cfu), and in significantly higher amount of total free amino acids and free fatty acids, 195.1 vs 178.9 and 328.6 vs 191.8 mg/100 g of experimental vs control cheese (made using a commercial starter) respectively. The experimental cheese also displayed better sensory properties such as taste and aftertaste.  相似文献   

13.
Free fatty acids (FFA) and lipid and protein oxidation changes during ripening were studied in Torta del Casar cheese. This cheese with protected designation of origin (PDO) is made from raw ewe milk and uses vegetable rennet. Cheeses were analysed at four different stages of ripening at 1, 30, 60 and 90 days. Most FFA significantly increased throughout maturation, except valeric and margaric acids. Acetic acid content increased during ripening and was the most abundant FFA in Torta del Casar cheese at the end of ripening. Short chain fatty acids (SCFA) showed an important increase throughout maturation, especially butyric, isovaleric and isobutyric acids. Lipid oxidation values significantly increased during the first month and decreased in the last 2 months of maturation; however, protein oxidation did not significantly change during ripening. Changes in FFA, especially SCFA, could have great importance in Torta del Casar cheese final characteristics; however, oxidative reactions did not play an important role.  相似文献   

14.
15.
We investigated the effect of capsular and ropy exopolysaccharide-producing Streptococcus thermophilus starter bacteria on Mozzarella cheese functionality and whey viscosity. Mozzarella cheeses were manufactured with Lactobacillus helveticus LH100 paired with one of four S. thermophilus strains: MR-1C, a bacterium that produces a capsular exopolysaccharide; MTC360, a strain that secretes a ropy exopolysaccharide; TAO61, a nonexopolysaccharide-producing commercial cheese starter; and DM10, a nonencapsulated, exopolysaccharide-negative mutant of strain MR-1C. As expected, cheese moisture levels were significantly higher in Mozzarella cheeses made with exopolysaccharide-positive versus exopolysaccharide-negative streptococci, and melt properties were better in the higher moisture cheeses. Whey viscosity measurements showed that unconcentrated and ultrafiltered, fivefold concentrated whey from cheeses made with S. thermophilus MTC360 were significantly more viscous than whey from cheeses made with MR-1C, TAO61, or DM10. No significant differences were noted between the viscosity of unconcentrated or concentrated whey from cheeses made with S. thermophilus MR-1C versus the industrial cheese starter TAO61. These data indicate that encapsulated, but not ropy, exopolysaccharide-producing S. thermophilus strains can be utilized to increase the moisture level of cheese and to improve the melt properties of Mozzarella cheese without adversely affecting whey viscosity.  相似文献   

16.
One of the least controlled defects in Swiss cheese is development of splits that appear during refrigerated storage after cheese is removed from the warm room. Such fissures, or cracks, in the body of the cheese can be as short as 1 cm, or long enough to span a 90-kg block. A 2 x 2 x 2 factorial experiment was used to determine the effect of different Lactobacillus helveticus/Propionibacterium freudenreichii ssp. shermanii starter culture combinations on the occurrence of split defect in Swiss cheese. Eights vats of cheese were made in summer and eight in winter. Each 90-kg block of cheese was cut into twenty-four 4-kg blocks and graded based on the presence of splits. Only small variations were found in the composition of cheeses made during the same season. There were no correlations between moisture, pH, fat, protein, calcium, lactose contents, D/L lactate ratio, or protein degradation that could be used to predict splits after 90 d of storage. However, cheese made in the summer had 2% higher moisture content and a greater prevalence of splits. There was a sixfold increase in amount of downgraded cheese between the best and worst culture combinations used during cheese manufacture. After 90-d storage, 14 to 90% of cheese had splits in the summer, and 1 to 6% in the winter. Split formation increased with time from 60 to 120 d of storage and extent of split formation was influenced by both the lactobacilli and propionibacteria cultures used.  相似文献   

17.
The effects of the adjunct cultures Lactococcus lactis ssp. diacetylactis, Brevibacterium linens BL2, Lactobacillus helveticus LH212, and Lactobacillus reuteri ATCC 23272 on volatile free fatty acid production in reduced-fat Edam cheese were studied. Lipase activity evaluation using p-nitrophenyl fatty acid ester substrates indicated that L. lactis ssp. diacetylactis showed the highest activity among the 4 adjunct cultures. Full-fat and 33% reduced-fat control cheeses (no adjunct) were made along with 5 treatments of reduced-fat cheeses, which included individual, and a mixture of the adjunct cultures. Volatile free fatty acids of cheeses were analyzed using static headspace analysis with 4-bromofluorobenzene as an internal standard. Changes in volatile free fatty acid concentrations were found in headspace gas of cheeses after 3-and 6-mo ripening. Acetic acid was the most abundant acid detected throughout ripening. Full-fat cheese had the highest relative amount of propionic acid among the cheeses. Certain adjunct cultures had a definite role in lipolysis at particular times. Reduced-fat cheese with L. lactis ssp. diacetylactis at 3-mo showed the highest levels of butyric, isovaleric, n-valeric, iso-caproic, and n-caproic acid. Reduced-fat cheese with Lactobacillus reuteri at 6 mo produced the highest relative concentration of isocaproic, n-caproic, and heptanoic, and the highest relative concentration of total acids.  相似文献   

18.
Whey, a by-product of the cheese industry usually disposed as waste, is a source of biological and functional valuable proteins. The aim of this work was to evaluate the potentiality of three lactic acid bacteria strains to design a starter culture for developing functional whey-based drinks. Fermentations were performed at 37 and 42 degrees C for 24h in reconstituted whey powder (RW). Carbohydrates, organic acids and amino acids concentrations during fermentation were evaluated by RP-HPLC. Proteolytic activity was measured by the o-phthaldialdehyde test and hydrolysis of whey proteins was analyzed by Tricine SDS-PAGE. The studied strains grew well (2-3log cfu/ml) independently of the temperature used. Streptococcus thermophilus CRL 804 consumed 12% of the initial lactose concentration and produced the highest amount of lactic acid (45 mmol/l) at 24h. Lactobacillus delbrueckii subsp. bulgaricus CRL 454 was the most proteolytic (91 microg Leu/ml) strain and released the branched chain amino acids Leu and Val. In contrast, Lactobacillus acidophilus CRL 636 and S. thermophilus CRL 804 consumed most of the amino acids present in whey. The studied strains were able to degrade the major whey proteins, alpha-lactalbumin being degraded in a greater extent (2.2-3.4-fold) than beta-lactoglobulin. Two starter cultures were evaluated for their metabolic and proteolytic activities in RW. Both cultures acidified and reduced the lactose content in whey in a greater extent than the strains alone. The amino acid release was higher (86 microg/ml) for the starter SLb (strains CRL 804+CRL 454) than for SLa (strains CRL 804+CRL 636, 37 microg/ml). Regarding alpha-lactalbumin and beta-lactoglobulin degradation, no differences were observed as compared to the values obtained with the single cultures. The starter culture SLb showed high potential to be used for developing fermented whey-based beverages.  相似文献   

19.
Diacetyl and acetaldehyde were determined during ripening of Kefalotyri cheese produced using two different lactic cultures (A: Streptococcus thermophilus + Lactobacillus casei, SI cheese, B: Streptococcus thermophilus + Streptococcus diacetylactis + Streptococcus durans, S2 cheese). Diacetyl increased until the 60th day of ripening (2.49 and 1.62 ppm for S1 and S2 cheese, respectively) and until then was found in higher concentration in trials compared with control (0.91 ppm at 60 days). The possible contribution of lactic acid bacteria, pH and acidity of these cheese on diacetyl during ripening was discussed. Acetaldehyde was detected only until the 15th day of ripening (0.17, 0.20 and 0.08 ppm for control, S1 and S2 cheese, respectively).  相似文献   

20.
The characteristics of cell growth, lactic acid production, amino acid release and consumption by single-strain cultures of lactic acid bacteria (isolated from kefir grains), and by a multiple-strain kefir starter prepared from them, were studied. The change in the levels of free amino acids was followed throughout the kefir process: single-strain kefir bacteria and the kefir starter (Lactococcus lactis C15-1%+Lactobacillus helveticus MP12-3%+(Streptococcus thermophilus T15+Lactobacillus bulgaricus HP1 = 1:1)-3%) were cultivated in pasteurized (92 degrees C for 20 min) cow's milk (3% fat content) at 28 degrees C for 5 h (the kefir starter reached pH 4.7) and subsequently grown at 20 degrees C for 16 h; storage was at 4 degrees C for 168 h. The strain L. helveticus MP12 was unrivaled with respect to free amino acid production (53.38 mg (100 g)(-1)) and cell growth (17.8 x 10(8) CFU ml(-1)); however, it manifested the lowest acidification activity. L. bulgaricus HP1 released approximately 3.7 times less amino acids, nearly 5 times lower cell growth, and produced about 1.2 times more lactic acid. S. thermophilus T15 demonstrated dramatically complex amino acid necessities for growth and metabolism. With L. lactis C15, the highest levels of growth and lactic acid synthesis were recorded (18.3 x 10(8) CFU ml(-1) and 7.8 g l(-1) lactic acid at the 21st hour), and as for free amino acid production, it approximated L. bulgaricus HP1 (17.03 mg (100 g)(-1) maximum concentration). In the L. lactis C15 culture, the amino acids were used more actively throughout the first exponential growth phase (by the 10th hour) than during the second growth phase. The unique properties of the L. helveticus MP12 strain to produce amino acids were employed to create a symbiotic bioconsortium kefir culture, which, under conditions of kefir formation, enhanced lactic acid production and shortened the time required to reach pH 4.7; intensified cell growth activity, resulting in a respective 90- and 60-fold increase in the concentration of lactobacilli and cocci in the mixed culture compared to individual cultures; and accumulated free amino acids in the final kefir with higher total concentrations (56.88 mg (100 g)(-1)) and an individual concentration of essential amino acids (1.5 times) greater than that of yogurt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号