首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Previous studies have shown that directionally selective (DS) retinal ganglion cells cannot only discriminate the direction of a moving object but they can also discriminate the sequence of two flashes of light at neighboring locations in the visual field: that is, the cells elicit a DS response to both real and apparent motion. This study examines whether a DS response can be elicited in DS ganglion cells by simply stimulating two neighboring areas of the retina with high external K+. Extracellular recordings were made from ON-OFF DS ganglion cells in superfused rabbit retinas, and the responses of these cells to focal applications of 100 mM KCl to the vitreal surface of the retina were measured. All cells produced a burst of spikes (typically lasting 50-200 ms) when a short pulse (10-50 ms duration) of KCl was ejected from the tip of a micropipette that was placed within the cell's receptive field. When KCl was ejected successively from the tips of two micropipettes that were aligned along the preferred-null axis of a cell, sequence-dependent responses were observed. The response to the second micropipette was suppressed when mimicking motion in the cell's null direction, whereas an enhancement during apparent motion in the opposite direction frequently occurred. Sequence discrimination in these cells was eliminated by the GABA antagonist picrotoxin and by the Ca(2+)-channel blocker omega-conotoxin MVIIC, two drugs that are known to abolish directional selectivity in these ganglion cells. The spatiotemporal properties of the K(+)-evoked sequence-dependent responses are described and compared with previous findings on apparent motion responses of ON-OFF DS ganglion cells.  相似文献   

2.
To test the effects of complex visual motion stimuli on the responses of single neurons in the middle temporal visual area (MT) and the medial superior temporal area (MST) of the macaque monkey, we compared the response elicited by one object in motion through the receptive field with the response of two simultaneously presented objects moving in different directions through the receptive field. There was an increased response to a stimulus moving in a direction other than the best direction when it was paired with a stimulus moving in the best direction. This increase was significant for all directions of motion of the non-best stimulus and the magnitude of the difference increased as the difference in the directions of the two stimuli increased. Similarly, there was a decreased response to a stimulus moving in a non-null direction when it was paired with a stimulus moving in the null direction. This decreased response in MT did not reach significance unless the second stimulus added to the null direction moved in the best direction, whereas in MST the decrease was significant when the second stimulus direction differed from the null by 90 degrees or more. Further analysis showed that the two-object responses were better predicted by taking the averaged response of the neuron to the two single-object stimuli than by summation, multiplication, or vector addition of the responses to each of the two single-object stimuli. Neurons in MST showed larger modulations than did neurons in MT with stimuli moving in both the best direction and in the null direction and the average better predicted the two-object response in area MST than in area MT. This indicates that areas MT and MST probably use a similar integrative mechanisms to create their responses to complex moving visual stimuli, but that this mechanism is further refined in MST. These experiments show that neurons in both MT and MST integrate the motion of all directions in their responses to complex moving stimuli. These results with the motion of objects were in sound agreement with those previously reported with the use of random dot patterns for the study of transparent motion in MT and suggest that these neurons use similar computational mechanisms in the processing of object and global motion stimuli.  相似文献   

3.
When an expansion flow field of moving dots is overlapped by planar motion, observers perceive an illusory displacement of the focus of expansion (FOE) in the direction of the planar motion (Duffy and Wurtz, Vision Research, 1993;33:1481-1490). The illusion may be a consequence of induced motion, wherein an induced component of motion relative to planar dots is added to the motions of expansion dots to produce the FOE shift. While such a process could be mediated by local 'center-surround' receptive fields, the effect could also be due to a higher level process which detects and subtracts large-field planar motion from the flow field. We probed the mechanisms underlying this illusion by adding varying amounts of rotation to the expansion stimulus, and by varying the speed and size of the planar motion field. The introduction of rotation into the stimulus produces an illusory shift in a direction perpendicular to the planar motion. Larger FOE shifts were perceived for greater speeds and sizes of planar motion fields, although the speed effect saturated at high speeds. While the illusion appears to share a common mechanism with center-surround induced motion, our results also point to involvement of a more global mechanism that subtracts coherent planar motion from the flow field. Such a process might help to maintain visual stability during eye movements.  相似文献   

4.
Spatial receptive fields of primary auditory (AI) neurons were studied by delivering, binaurally, synthesized virtual-space signals via earphones to cats under barbiturate anesthesia. Signals were broadband or narrowband transients presented in quiet anechoic space or in acoustic space filled with uncorrelated continuous broadband noise. In the absence of background noise, AI virtual space receptive fields (VSRFs) are typically large, representing a quadrant or more of acoustic space. Within the receptive field, onset latency and firing strength form functional gradients. We hypothesized earlier that functional gradients in the receptive field provide information about sound-source direction. Previous studies indicated that spatial gradients could remain relatively constant across changes in signal intensity. In the current experiments we tested the hypothesis that directional sensitivity to a transient signal, as reflected in the gradient structure of VSRFs of AI neurons, is also retained in the presence of a continuous background noise. When background noise was introduced three major affects on VSRFs were observed. 1) The size of the VSRF was reduced, accompanied by a reduction of firing strength and lengthening of response latency for signals at an acoustic axis and on-lines of constant azimuth and elevation passing through the acoustic axis. These effects were monotonically related to the intensity of the background noise over a noise intensity range of approximately 30 dB. 2) The noise intensity-dependent changes in VSRFs were mirrored by the changes that occurred when the signal intensity was changed in signal-alone conditions. Thus adding background noise was equivalent to a shift in the threshold of a directional signal, and this shift was seen across the spatial receptive field. 3) The spatial gradients of response strength and latency remained evident over the range of background noise intensity that reduced spike count and lengthened onset latency. Those gradients along the azimuth that spanned the frontal midline tended to remain constant in slope and position in the face of increasing intensity of background noise. These findings are consistent with our hypothesis that, under background noise conditions, information that underlies directional acuity and accuracy is retained within the spatial receptive fields of an ensemble of AI neurons.  相似文献   

5.
Extracellular recordings obtained from the extrastriate cortex of the California ground squirrel, a diurnal sciurid, show that large receptive fields and a strong direction selectivity are present in the middle lateral area (ML) and the lateral area (L), located laterally to V2 and V3. Direction selectivity was tested by presenting stimuli of varying dimensions, shapes and speeds at different locations in the visual field. Most cells in ML and L (84%) were direction selective, with a preference for fast speeds, indicating that these areas share a role in motion processing. Areas ML and L may be homologous to area MT or may represent a case of homoplasia. A directional anisotropy for motion towards the vertical meridian was found in ML and L cells, suggesting that these areas may be involved in detecting predators and other moving objects coming from the periphery, rather than in processing flow fields caused by forward locomotion, for which a centrifugal bias might be expected.  相似文献   

6.
A computational model was developed to explain the effects of an interframe interval (IFI) in single-step apparent motion experiments. In these experiments a stimulus appears in one position, disappears, and then reappears in a shifted position after a short or long IFI. If the luminance during the IFI matches the mean luminance of the stimulus frames, long IFIs result in perceived motion opposite the short-IFI conditions. Brighter or darker IFIs, however, do not support the reversed motion effect. The model possess the following defining characteristics: (1) a biphasic ("transient") channel whose signalled direction of motion reverses with changes of IFI duration; (2) a combined direction-opponent output which is the sum of directional responses developed in two channels--biphasic ("transient") and monophasic ("sustained"); (3) a signal/noise weighting of the contributions of the two channels to the final directional output of the system. Predictions of the model about the effects of IFI intensity and viewing eccentricity were tested and confirmed in two new psychophysical experiments. The interpretations of past studies which included a role for second-order motion mechanisms in explaining IFI duration effects were reexamined. Further empirical tests of the model were outlined.  相似文献   

7.
1. The middle temporal area (MT) projects to the intraparietal sulcus in the macaque monkey. We describe here a discrete area in the depths of the intraparietal sulcus containing neurons with response properties similar to those reported for area MT. We call this area the physiologically defined ventral intraparietal area, or VIP. In the present study we recorded from single neurons in VIP of alert monkeys and studied their visual and oculomotor response properties. 2. Area VIP has a high degree of selectivity for the direction of a moving stimulus. In our sample 72/88 (80%) neurons responded at least twice as well to a stimulus moving in the preferred direction compared with a stimulus moving in the null direction. The average response to stimuli moving in the preferred direction was 9.5 times as strong as the response to stimuli moving in the opposite direction, as compared with 10.9 times as strong for neurons in area MT. 3. Many neurons were also selective for speed of stimulus motion. Quantitative data from 25 neurons indicated that the distribution of preferred speeds ranged from 10 to 320 degrees/s. The degree of speed tuning was on average twice as broad as that reported for area MT. 4. Some neurons (22/41) were selective for the distance at which a stimulus was presented, preferring a stimulus of equivalent visual angle and luminance presented near (within 20 cm) or very near (within 5 cm) the face. These neurons maintained their preference for near stimuli when tested monocularly, suggesting that visual cues other than disparity can support this response. These neurons typically could not be driven by small spots presented on the tangent screen (at 57 cm). 5. Some VIP neurons responded best to a stimulus moving toward the animal. The absolute direction of visual motion was not as important for these cells as the trajectory of the stimulus: the best stimulus was one moving toward a particular point on the face from any direction. 6. VIP neurons were not active in relation to saccadic eye movements. Some neurons (10/17) were active during smooth pursuit of a small target. 7. The predominance of direction and speed selectivity in area VIP suggests that it, like other visual areas in the dorsal stream, may be involved in the analysis of visual motion.  相似文献   

8.
As a step toward understanding the mechanism by which targets are selected for smooth-pursuit eye movements, we examined the behavior of the pursuit system when monkeys were presented with two discrete moving visual targets. Two rhesus monkeys were trained to select a small moving target identified by its color in the presence of a moving distractor of another color. Smooth-pursuit eye movements were quantified in terms of the latency of the eye movement and the initial eye acceleration profile. We have previously shown that the latency of smooth pursuit, which is normally around 100 ms, can be extended to 150 ms or shortened to 85 ms depending on whether there is a distractor moving in the opposite or same direction, respectively, relative to the direction of the target. We have now measured this effect for a 360 deg range of distractor directions, and distractor speeds of 5-45 deg/s. We have also examined the effect of varying the spatial separation and temporal asynchrony between target and distractor. The results indicate that the effect of the distractor on the latency of pursuit depends on its direction of motion, and its spatial and temporal proximity to the target, but depends very little on the speed of the distractor. Furthermore, under the conditions of these experiments, the direction of the eye movement that is emitted in response to two competing moving stimuli is not a vectorial combination of the stimulus motions, but is solely determined by the direction of the target. The results are consistent with a competitive model for smooth-pursuit target selection and suggest that the competition takes place at a stage of the pursuit pathway that is between visual-motion processing and motor-response preparation.  相似文献   

9.
Evaluated the influence of physical properties of sensory stimuli (visual intensity, direction, and velocity; auditory intensity and location) on sensory activity and multisensory integration of superior colliculus (SC) neurons in awake, behaving primates. Two male monkeys were trained to fixate a central visual fixation point while visual and/or auditory stimuli were presented in the periphery. Visual stimuli were always presented within the contralateral receptive field of the neuron whereas auditory stimuli were presented at either ipsi- or contralateral locations. 66 of the 84 SC neurons responsive to these sensory stimuli had stronger responses when the visual and auditory stimuli were combined at contralateral locations than when the auditory stimulus was located on the ipsilateral side. This trend was significant across the population of auditory-responsive neurons. In addition, 31 SC neurons were presented a battery of tests in which the quality of one stimulus of a pair was systematically manipulated. Eight of these neurons showed preferential responses to stimuli with specific physical properties, and these preferences were not significantly altered when multisensory stimulus combinations were presented. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

10.
Transient broad-band stimuli that mimic in their spectrum and time waveform sounds arriving from a speaker in free space were delivered to the tympanic membranes of barbiturized cats via sealed and calibrated earphones. The full array of such signals constitutes a virtual acoustic space (VAS). The extra-cellular response to a single stimulus at each VAS direction, consisting of one or a few precisely time-locked spikes, was recorded from neurons in primary auditory cortex. Effective sound directions form a virtual space receptive field (VSRF). Near threshold, most VSRFs were confined to one quadrant of acoustic space and were located on or near the acoustic axis. Generally, VSRFs expanded monotonically with increases in stimulus intensity, with some occupying essentially all of the acoustic space. The VSRF was not homogeneous with respect to spike timing or firing strength. Typically, onset latency varied by as much as 4-5 msec across the VSRF. A substantial proportion of recorded cells exhibited a gradient of first-spike latency within the VSRF. Shortest latencies occupied a core of the VSRF, on or near the acoustic axis, with longer latency being represented progressively at directions more distant from the core. Remaining cells had VSRFs that exhibited no such gradient. The distribution of firing probability was mapped in those experiments in which multiple trials were carried out at each direction. For some cells there was a positive correlation between latency and firing probability.  相似文献   

11.
Spatial and temporal analysis of contrast-modulated sine-wave gratings reveals that the second-order motion stimulus contains two sidebands, with equal energy but moving in opposite directions, flanking a stationary carrier. Any early linear spatial filtering process in the visual system that attenuates one sideband more than the other will be detrimental to the balance between the two sidebands, so that the perceived direction of the carrier might be opposite to that of the envelope motion. We tested this hypothesis by using contrast-modulated gratings presented centrally or at 20 deg in the horizontal nasal field with a two-alternative forced-choice staircase paradigm. We found that when the envelope frequency was close to that of the carrier, a second-order stimulus whose envelope motion direction was correctly identified in the fovea appeared to drift in the opposite direction in the periphery. Further increasing the envelope spatial frequency resulted in a reversed motion percept in both central and peripheral viewing conditions. For subjects to identify correctly the direction of motion of the envelope, the spatial frequency ratio of the carrier to the envelope had to be more than 2 in the fovea and more than 6 in the periphery. These phenomena in second-order motion perception can be explained by a linear model of motion detection with an early spatial filtering process. Further experiments and computer simulation show that undersampling of the carrier has little effect on second-order motion perception in the periphery, as long as the carrier is detectable.  相似文献   

12.
A model for the early stages of motion processing in the visual cortex is presented. The 'building block' for this model is the 'rebound response', which is the neuronal response evoked when a sufficient inhibitory stimulus is turned off. This response enables detection of temporal changes when the stimulus involves spatial changes. The model suggests that adjacent subunits in primary cortical cells have different weight functions for rebound responses, and thus a synergistic type of response is evoked in the preferred direction, which is predicted for both light and dark stimuli. Predictions of the model for different stimuli and receptive field structures are discussed. It appears to be more economical than previous motion models.  相似文献   

13.
This study investigated multisensory interactions in the perception of auditory and visual motion. When auditory and visual apparent motion streams are presented concurrently in opposite directions, participants often fail to discriminate the direction of motion of the auditory stream, whereas perception of the visual stream is unaffected by the direction of auditory motion (Experiment 1). This asymmetry persists even when the perceived quality of apparent motion is equated for the 2 modalities (Experiment 2). Subsequently, it was found that this visual modulation of auditory motion is caused by an illusory reversal in the perceived direction of sounds (Experiment 3). This "dynamic capture" effect occurs over and above ventriloquism among static events (Experiments 4 and 5), and it generalizes to continuous motion displays (Experiment 6). These data are discussed in light of related multisensory phenomena and their support for a "modality appropriateness" interpretation of multisensory integration in motion perception. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

14.
Neurons in the primary visual cortex are selective for the size, orientation and direction of motion of patterns falling within a restricted region of visual space known as the receptive field. The response to stimuli presented within the receptive field can be facilitated or suppressed by other stimuli falling outside the receptive field which, when presented in isolation, fail to activate the cell. Whether this interaction is facilitative or suppressive depends on the relative orientation of pattern elements inside and outside the receptive field. Here we show that neuronal facilitation preferentially occurs when a near-threshold stimulus inside the receptive field is flanked by higher-contrast, collinear elements located in surrounding regions of visual space. Collinear flanks and orthogonally oriented flanks, however, both act to reduce the response to high-contrast stimuli presented within the receptive field. The observed pattern of facilitation and suppression may be the cellular basis for the observation in humans that the detectability of an oriented pattern is enhanced by collinear flanking elements. Modulation of neuronal responses by stimuli falling outside their receptive fields may thus represent an early neural mechanism for encoding objects and enhancing their perceptual saliency.  相似文献   

15.
Visual evoked potentials can be elicited by a variety of visual stimuli, including pattern-onset and motion-onset. It may be desirable to combine pattern-onset with motion-onset stimuli, for example, to make a direct comparison between optokinetic nystagmus and visual evoked potential acuity thresholds. Both procedures employ grating stimuli; however, the gratings must be moving to produce optokinetic nystagmus. We compared pattern-onset visual evoked potentials with both a static and a moving pattern to investigate the effect of motion on the pattern-onset visual evoked potential waveform. Visual evoked potential recordings were made from 10 adults (aged 20-37 years) and 10 children (aged 5-7 years) with the active electrode at Oz. Stimuli consisted of onset of high-contrast vertical bars of three sizes (12', 30' and 60') both with and without motion (3 cycles/s). In a subgroup of subjects, visual evoked potentials were recorded to motion onset of constantly present gratings. Motion of the pattern had no significant effect on any of the latency components of the visual evoked potential waveform in adults or children. The amplitude of the C2-C3 component was significantly increased (p < 0.001) in adults. The motion appears to add a late negative component to the visual evoked potential similar to that produced by the motion-only stimulus. The latency of the early components of the pattern-onset visual evoked potential was unaffected by the presence of motion. Therefore, pattern-onset visual evoked potentials with moving gratings could be used to estimate visual acuity, and direct comparisons could be made between visual evoked potential and optokinetic nystagmus acuity thresholds with the use of the same stimulus parameters.  相似文献   

16.
A point-like stimulus was presented in a clockwise or counterclockwise sequence at 3, 4, 6, or 12 uniformly spaced locations around a circle in visual, tactile, or auditory space. In 4 experiments, the simulators were (a) light-emitting diodes in the frontal plane, (b) mechanical stimulators on the palm, (c) airpuff nozzles around the head, and (d) loudspeakers around the head. For each spatial separation and stimulus-onset asynchrony (SOA) between successive stimuli around the circle, participants reported the direction of motion. Within each modality, the SOA required for 75% accurate discrimination of direction increased with the spatial separations. A time–distance constraint akin to Korte's third law of visual apparent motion can thus be obtained from responses that are objectively classifiable as correct or incorrect (without relying on subjective reports of "goodness" of apparent motion). Moreover, this time-distance constraint evidently generalizes across sensory modalities. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

17.
Acoustical stimulation causes displacement of the sensory hair cells relative to the otoliths of the fish inner ear. The swimbladder, transforming the acoustical pressure component into displacement, also contributes to the displacement of the hair cells. Together, this (generally) yields elliptical displacement orbits. Alternative mechanisms of fish directional hearing are proposed by the phase model, which requires a temporal neuronal code, and by the orbit model, which requires a spike density code. We investigated whether the directional selective response of auditory neurons in the midbrain torus semicircularis (TS; homologous to the inferior colliculus) is based on spike density and/or temporal encoding. Rainbow trout were mounted on top of a vibrating table that was driven in the horizontal plane to simulate sound source direction. Rectilinear and elliptical (or circular) motion was applied at 172 Hz. Generally, responses to rectilinear and elliptical/circular stimuli (irrespective of direction of revolution) were the same. The response of auditory neurons was either directionally selective (DS units, n = 85) or not (non-DS units, n = 106). The average spontaneous discharge rate of DS units was less than that of non-DS units. Most DS units (70%) had spontaneous activities < 1 spike per second. Response latencies (mode at 18 ms) were similar for both types of units. The response of DS units is transient (19%), sustained (34%), or mixed (47%). The response of 75% of the DS units synchronized to stimulus frequency, whereas just 23% of the non-DS responses did. Synchronized responses were measured at stimulus amplitudes as low as 0.5 nm (at 172 Hz), which is much lower than for auditory neurons in the medulla of the trout, suggesting strong convergence of VIIIth nerve input. The instant of firing of 42% of the units was independent of stimulus direction (shift <15 degrees), but for the other units, a direction dependent phase shift was observed. In the medial TS spatial tuning of DS units is in the rostrocaudal direction, whereas in the lateral TS all preferred directions are present. On average, medial DS units have a broader directional selectivity range, are less often synchronized, and show a smaller shift of the instant of firing as a function of stimulus direction than lateral DS units. DS response characteristics are discussed in relation to different hypotheses. We conclude that the results are more in favor of the phase model.  相似文献   

18.
The judged final position of a moving stimulus has been suggested to be shifted in the direction of motion because of mental extrapolation (representational momentum). However, a perceptual explanation is possible: The eyes overshoot the final position of the target, and because of a foveal bias, the judged position is shifted in the direction of motion. To test this hypothesis, the authors replicated previous studies, but instead of having participants indicate where the target vanished, the authors probed participants' perceptual focus by presenting probe stimuli close to the vanishing point. Identification of probes in the direction of target motion was more accurate immediately after target offset than it was with a delay. Another experiment demonstrated that judgments of the final position of a moving target are affected by whether the eyes maintain fixation or follow the target. The results are more consistent with a perceptual explanation than with a memory account. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

19.
PURPOSE: To quantify motion sensitivity in patients with infantile esotropia who, as a subgroup, have been previously reported to have abnormal oculomotor control. In addition, to probe abnormal binocular development as a factor underlying abnormal motion perception in infantile esotropia (IE), motion sensitivity was compared among participants with and without stereopsis. METHODS: Monocular sensitivity to leftward and rightward motion was assessed across the horizontal meridian, using partially coherent random dot kinematograms. Participants included 11 observers with IE, 5 observers with acquired esotropia, and 11 observers with normal eye alignment. RESULTS: Participants with IE showed no deficits in motion sensitivity to any visual field locations when motion thresholds were collapsed across direction. However, they showed an abnormal variation in directional anisotropy. Although sensitivity to centripetal motion was superior in both hemifields of control participants and in the temporal hemifields of participants with IE, a centrifugal bias was revealed in the nasal hemifields of IE. Stereoblind observers with acquired esotropia showed a normal centripetal directional anisotropy, whereas binocular observers with acquired esotropia showed directional anisotropy similar to that in the IE group. CONCLUSIONS: Motion perception, like oculomotor function in IE, is characterized by a variation of directional anisotropy for stimuli presented to the nasal hemifields. This finding supports the hypothesis that abnormal oculomotor control and motion perception in IE reflect a common disruption of the visual system. A similar variation of directional sensitivity in patients with acquired esotropia with normal stereopsis suggests that the interruption of binocularity is not the underlying cause of abnormal motion perception in IE.  相似文献   

20.
"Physiological memory" is enduring neuronal change sufficiently specific to represent learned information. It transcends both sensory traces that are detailed but transient and long-term physiological plasticities that are insufficiently specific to actually represent cardinal details of an experience. The specificity of most physiological plasticities has not been comprehensively studied. We adopted receptive field analysis from sensory physiology to seek physiological memory in the primary auditory cortex of adult guinea pigs. Receptive fields for acoustic frequency were determined before and at various retention intervals after a learning experience, typified by single-tone delay classical conditioning, e.g., 30 trials of tone-shock pairing. Subjects rapidly (5-10 trials) acquire behavioral fear conditioned responses, indexing acquisition of an association between the conditioned and the unconditioned stimuli. Such stimulus-stimulus association produces receptive field plasticity in which responses to the conditioned stimulus frequency are increased in contrast to responses to other frequencies which are decreased, resulting in a shift of tuning toward or to the frequency of the conditioned stimulus. This receptive field plasticity is associative, highly specific, acquired within a few trials, and retained indefinitely (tested to 8 weeks). It thus meets criteria for "physiological memory." The acquired importance of the conditioned stimulus is thought to be represented by the increase in tuning to this stimulus during learning, both within cells and across the primary auditory cortex. Further, receptive field plasticity develops in several tasks, one-tone and two-tone discriminative classical and instrumental conditioning (habituation produces a frequency-specific decrease in the receptive field), suggesting it as a general process for representing the acquired meaning of a signal stimulus. We have proposed a two-stage model involving convergence of the conditioned and unconditioned stimuli in the magnocellular medial geniculate of the thalamus followed by activation of the nucleus basalis, which in turn releases acetylcholine that engages muscarinic receptors in the auditory cortex. This model is supported by several recent findings. For example, tone paired with NB stimulation induces associative, specific receptive field plasticity of at least a 24-h duration. We propose that physiological memory in auditory cortex is not "procedural" memory, i.e., is not tied to any behavioral conditioned response, but can be used flexibly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号