首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of an IL-1 receptor antagonist on recurrence of hyperglycaemia after syngeneic pancreatic islet transplantation to spontaneously diabetic female NOD mice was investigated. The transplanted animals were treated with either the receptor antagonist (8.0 mg/kg body weight per day for 12-14 days) or PBS, delivered by subcutaneously implanted osmotic pumps. In the control animals, a transient normoglycaemia was achieved, but hyperglycaemia was generally observed 6 days after islet transplantation. Administration of IL-1 receptor antagonist had a clear protective effect against recurrence of hyperglycaemia until day 14, but after cessation of drug delivery hyperglycaemia re-appeared. The results indicate that continuous administration of the IL-1 receptor antagonist can prevent recurrence of the diabetogenic process in NOD mice. IL-1 receptor antagonist may therefore become a useful adjuvant immunomodulating therapy after human islet transplantation in insulin-dependent diabetes mellitus.  相似文献   

2.
Administration of TNF-alpha to autoimmune diabetes-prone nonobese diabetic mice and biobreeding rats inhibits diabetes development; however, the mechanism(s) of diabetes prevention by TNF-alpha has not been established. We used the model of syngeneic islet transplantation into diabetic nonobese diabetic mice to study the effects of TNF-alpha administration on the types of mononuclear cells and cytokines expressed in the islet grafts and on autoimmune diabetes recurrence. Twice daily i.p. injections of TNF-alpha (20 microg/day) from day 1 to day 30 after islet transplantation significantly prolonged islet graft survival; thus, 70% (16 of 23) of mice treated with TNF-alpha were normoglycemic at 30 days after islet transplantation compared with none (0 of 14) of vehicle-treated control mice. Islet grafts and spleens from TNF-alpha-treated mice at 10 days after islet transplantation contained significantly fewer CD4+ and CD8+ T cells, and significantly decreased mRNA levels of type 1 cytokines (IFN-gamma, IL-2, and TNF-beta) than islet grafts and spleens from control mice. Regarding type 2 cytokines, IL-4 mRNA levels were not changed significantly in islet grafts or spleens of TNF-alpha-treated mice, whereas IL-10 mRNA levels were decreased significantly in islet grafts of TNF-alpha-treated mice and not significantly changed in spleens. TGF-beta mRNA levels in islet grafts and spleens were similar in TNF-alpha-treated and control mice. These results suggest that TNF-alpha partially protects beta cells in syngeneic islet grafts from recurrent autoimmune destruction by reducing CD4+ and CD8+ T cells and down-regulating type 1 cytokines, both systemically and locally in the islet graft.  相似文献   

3.
BACKGROUND: We and others have reported previously that the immunosuppressant, leflunomide (Lef), can prevent allogeneic and xenogeneic islet graft rejection in streptozocin (STZ)-induced diabetic animals. However, whether Lef required to prevent islet graft rejection is sufficient to prevent the recurrence of autoimmune diabetes has not been addressed. METHODS: The effect of Lef on concordant xenogeneic islet graft in STZ-induced diabetic mice and autoimmune nonobese diabetic (NOD) mice were studied. Then, whether Lef prevents the onset of spontaneous diabetes in young NOD mice and the recurrence of diabetes after major histocompatibility complex (MHC)-matched islet transplantation in diabetic NOD mice were investigated. RESULTS: In STZ-induced diabetic BALB/c mice, Lef treatment significantly prolonged rat islet graft survival. However, Lef could not significantly prolong rat islet graft survival in autoimmune diabetic NOD mice. For prevention studies, treatment with Lef at 30 mg/ kg/day from 4 weeks to 20 weeks of age significantly reduced the incidence of spontaneous diabetes in NOD mice. However, when the NOD mice were treated from 8 to 24 weeks of age, the incidence of spontaneous diabetes was not significantly reduced as compared to the incidence of diabetes in the untreated female NOD mice at 28 weeks of age. Finally, in the MHC-matched islet transplant model, Lef could not significantly prolong MHC-matched nonobese diabetes-resistant mice islet graft survival in NOD mice. CONCLUSIONS: Lef preventing concordant xenogeneic islet graft rejection is not sufficient to prevent the recurrence of autoimmune diabetes in NOD mice. We believe that controlling autoimmunity after islet transplantation will lead the way to promote successful clinical islet transplantation in the future.  相似文献   

4.
BACKGROUND: We performed ex vivo adenoviral gene transfer in a mouse pancreatic islet transplant model to test the efficacy of this expression system. We then determined whether adenoviral-mediated expression of mouse interleukin (IL) 4 or IL-10 from transduced syngeneic islet grafts could prevent disease recurrence in diabetic nonobese diabetic (NOD) mice. METHODS: An adenoviral vector expressing beta-galactosidase (AdCMV betaGal) was used to transduce BALB/c islets (2.5 x 10(3) plaque-forming units/islet), which were analyzed for glucose responsiveness, islet cell recovery, and efficiency of gene transfer. In vivo function and reporter gene expression were examined with AdCMV betaGal-transduced islet grafts in alloxan-induced diabetic syngeneic recipients. Adenoviruses expressing either IL-4 or IL-10 were used in a similar fashion to infect NOD islets, which were characterized in vitro, as well as transplanted into diabetic syngeneic recipients. RESULTS: In vitro functional studies showed no significant difference between control or transduced islets, with 50+/-4% of AdCMV betaGal-infected islet cells staining positive for beta-galactosidase. Transplant recipients became nomoglycemic within 48 hr after transplant, and, although beta-galactosidase expression decreased over time, it was detectable in the graft for up to 8 weeks. Despite the nanogram quantities of IL-4 or IL-10 produced/day from each graft equivalent in vitro, transduced and transplanted NOD islets failed to prevent disease recurrence. CONCLUSIONS: These results suggest that adenoviruses are efficient for at least medium term gene expression from islets in vivo, but neither IL-4 nor IL-10 alone can prevent autoimmune disease recurrence in NOD mice.  相似文献   

5.
6.
Islet allografts transplanted into Type I diabetic recipients may be destroyed by allorejection or recurrent autoimmune diabetes. We studied islet transplantation in three murine models in order to determine the relative sensitivity of autoimmunity and alloimmunity to two immunosuppressive agents that may be useful in clinical islet transplantation: 15-deoxyspergualin (DSG) and anti-CD4 antibody (GK 1.5). In the model in which only allorejection occurs (BALB/c islets transplanted into streptozotocin-induced diabetic CBA or streptozotocin-induced diabetic NOD recipients), both DSG and anti-CD4 antibody treatment led to indefinite survival of allogeneic islets (>100 days in both treatments). In the second model in which only recurrent autoimmunity can destroy islet grafts (islets from NOD donors transplanted into spontaneously diabetic NOD recipients), only anti-CD4 treatment caused prolonged graft survival [MST 36.7 +/- 6.8 days vs 9.8 +/- 1.8 days (controls), P < 0.0002]. Treatment with DSG did not cause any increase in graft survival (MST 12.6 +/- 5.4 days, NS). Finally, using a model in which both autoimmunity and allorejection may occur (BALB/c to spontaneously diabetic NOD mice), treatment with anti-CD4 caused marked graft prolongation [42.0 +/- 14.5 days vs 7.2 +/- 0.8 days (control), P < 0.002] while DSG again did not prolong graft survival with respect to untreated recipients (9.8 +/- 3.0, NS). We conclude that recurrent autoimmunity in the NOD mouse involves a CD4+ T cell that is not sensitive to DSG. Anti-CD4 antibody may be useful in human clinical islet transplantation trials because it seems to prevent both allorejection and recurrent autoimmunity.  相似文献   

7.
We have shown that immunization of non-obese diabetic (NOD) mice with adjuvants (CFA or BCG) prevents the onset of diabetes by induction of regulatory cells. Since autoimmune responses to glutamic acid decarboxylase (GAD) are up-regulated in insulin-dependent diabetes mellitus (IDDM), in this study GAD67-specific antibody, T cell proliferation and lymphokine production patterns were analysed in the adjuvant-treated mice to characterize the regulatory mechanisms underlying the protection. We used both spontaneous diabetes and syngeneic islet transplantation models in NOD mice. Protection against spontaneous diabetes and prevention of syngeneic islet graft rejection by CFA or BCG treatment was found to be accompanied by the production of long lasting and high titre anti-GAD67 antibody of IgG1 isotype in the sera. Upon in vitro stimulation with GAD67, draining lymph node and spleen cells from CFA-immunized NOD mice or syngeneic islet-grafted and BCG-protected NOD mice produced much more IL-4, whereas there was no significant change in IFN-gamma production. The strong early T cell proliferative response to GAD67 in CFA or BCG-immunized NOD mice was followed by a low or unresponsiveness state. Taken together, these results suggest a shift in Th1/Th2 balance in the GAD67-specific endogenous immune response to a change in Th2 levels after adjuvant treatment. We postulate that the protective effect of CFA or BCG is due to the diversion of GAD-specific endogenous cellular immune response to a non-pathogenic humoral response.  相似文献   

8.
Insulin replacement by injection is clearly not a cure for Insulin Dependent Diabetes Mellitus (IDDM). Replacement of the destroyed islets by pancreas or islet allograft transplantation can achieve the good metabolic control required to prevent diabetic complications, but tissue supply is limited. The problem of islet supply to treat the 1 million IDDM patients in the USA could be overcome by using immortalized islet beta-cells as a donor source. However, before either allogeneic or xenogeneic immortalized beta-cells are used, some major problems have to be overcome: control of immortalized cell growth, allograft or xenograft rejection and recurrence of autoimmunity. To tackle these problems we have used a cell impermeable immunoisolation device containing mouse insulinoma cells. Transplantation of devices with insulinomas from NOD mice carrying the Rat-insulin promoter regulated SV40 T-Antigen transgene (RIP-TAg), normalized the blood glucose levels of diabetic NOD mice. Insulinomas from allogeneic CBA/NOD-RIP-TAg mice were also capable of normalizing diabetic NOD mice. Not only were non-fasting blood glucoses normalized but when given an intraperitoneal injection of glucose, the corrected mice had a near normal clearance of glucose from the blood. When the devices were removed from normalized mice they became diabetic again, demonstrating that the immunoisolation device was capable of protecting against both alloimmune and autoimmune destruction. The results with allogeneic mouse beta-cells suggest the possibility that immortalized human beta-cells could be an effective source of tissue to correct diabetes in IDDM patients without the use of immunosuppression.  相似文献   

9.
Grafting autoimmune-diabetic recipients with allogeneic islets, graft rejection and disease recurrence as major problems of reaching indefinite survival and tolerance induction have to be solved. Anti-CD25 and anti-CD4 monoclonal antibodies were successfully used after allogeneic islet transplantation in experimentally diabetic rats. A temporary anti-CD25 therapy also prevented disease recurrence in autoimmune-diabetic BB rats, while this was not yet reported for an anti-CD4 treatment. In autoimmune-diabetic NOD mice disease recurrence can be successfully treated using an anti-CD4 monoclonal antibody. We, therefore, compared the efficacy of a short-term anti-CD25 and anti-CD4 treatment regarding the prevention of allograft rejection and disease recurrence in autoimmune-diabetic BB/OK rats. Both monoclonal antibodies were combined with low doses of Cyclosporin A. Untreated BB/OK rats relapsed into hyperglycaemia within 3 weeks independent of the islet donor, LEW.1A, LEW.1BB/OK or BB/OK rats. However, after grafting MHC-identical allogeneic (LEW.1BB/OK) or syngeneic (BB/OK) islets we observed about 30% spontaneous acceptance. Both the anti-CD25 and anti-CD4 therapy significantly prolonged the survival of allogeneic grafted islets. After MHC-identical allogeneic and syngeneic islet transplantation the temporary immunotherapy increased the proportion of permanent acceptors to 63% and 75%, respectively. The efficacy of both treatment strategies in prolonging allograft survival and prevention of disease recurrence was identical. In summary, anti-CD25 as well as anti-CD4 therapy prevented autoimmune but not allogeneic islet destruction in autoimmune-diabetic BB/OK rats. In conclusion, targeting different immune cells by monoclonal antibodies with different specificities can lead to very similar results with respect to an interruption of allograft rejection and autoimmune reaction.  相似文献   

10.
11.
Nonobese diabetic (NOD) mice genetically deficient in B lymphocytes (NODJg mu(null)) are resistant to T cell-mediated autoimmune insulin-dependent diabetes mellitus (IDDM). Ig infusions from diabetic NOD donors did not abrogate IDDM resistance in NODJg mu(null) mice. However, T cell responses to the candidate pancreatic beta cell autoantigen glutamic acid decarboxylase (GAD), but not the control Ag keyhole limpet hemocyanin, were eliminated in NODJg mu(null) mice. To initially test whether they contribute to IDDM as APC, NOD B lymphocytes were transferred into NODJg mu(null) recipients. B lymphocytes transferred into unmanipulated NODJg mu(null) recipients were rejected by MHC class I-restricted T cells. Stable T and B lymphocyte repopulation was achieved in irradiated NODJg mu(null) mice reconstituted with syngeneic bone marrow admixed with NOD B lymphocytes. IDDM susceptibility was restored in NODJg mu(null) mice reconstituted with syngeneic marrow plus B lymphocytes, but not with syngeneic marrow only. T cell responses to GAD were restored only in NODJg mu(null) mice reconstituted with syngeneic marrow plus B lymphocytes. Hence, B lymphocytes appear to contribute to IDDM in NOD mice as APC with a preferential ability to present certain beta cell Ags such as GAD to autoreactive T cells.  相似文献   

12.
BACKGROUND: Host macrophages are abundant within fetal pig pancreas xenografts undergoing rejection, but their role is unknown. Therefore, we examined the effect of host macrophage depletion on xenograft rejection. METHODS: Nonobese diabetic (NOD) mice were given clodronate-loaded liposomes intravenously to deplete macrophages. Controls received phosphate-buffered saline (PBS) or PBS-liposomes. General immune status was assessed after 2, 3, and 7 days by (1) fluorescence-activated cell sorter analysis of peripheral blood, spleen, and lymph node cells, (2) immunohistochemistry on spleens, and (3) mixed lymphocyte reaction. Organ-cultured fetal pig pancreas was transplanted under the kidney capsule of NOD mice 3 days after clodronate or PBS injection. Grafts were assessed histologically at 4, 5, 6, and 8 days after transplantation. RESULTS: Splenic macrophages and peripheral blood monocytes were depleted 2 days after clodronate treatment but had recovered within 11 days. T cell, B cell, and dendritic cell numbers were normal in spleen, peripheral blood, and lymph nodes of clodronate-treated mice, and T cells and antigen-presenting cells from these mice functioned normally in mixed lymphocyte reaction. Clodronate treatment markedly reduced graft infiltration by macrophages, T cells, and eosinophils at 4, 5, and 6 days after transplantation, and was associated with maintenance of endocrine cell viability and insulin expression. However, all grafts were rejected 8 days after transplantation, concordant with reappearance of splenic macrophages. CONCLUSIONS: Short-term, specific depletion of macrophages markedly delayed cellular infiltration and rejection of xenografts. The results provide the first evidence that macrophages promote T-cell infiltration and rejection of fetal pig pancreas xenografts in NOD mice.  相似文献   

13.
Allogeneic transplantation of islets of Langerhans was facilitated by the cotransplantation of syngeneic myoblasts genetically engineered to express the Fas ligand (FasL). Composite grafting of allogeneic islets with syngeneic myoblasts expressing FasL protected the islet graft from immune rejection and maintained normoglycemia for more than 80 days in mice with streptozotocin-induced diabetes. Graft survival was not prolonged with composite grafts of unmodified myoblasts or Fas-expressing myoblasts. Islet allografts transplanted separately from FasL-expressing myoblasts into the contralateral kidney were rejected, as were similarly transplanted third-party thyroid allografts. Thus, the FasL signal provided site- and immune-specific protection of islet allografts.  相似文献   

14.
To determine whether pregnancy provides an improved milieu for fetal/neonatal pancreas/islet transplantation, we studied neonatal pancreatic implants into non-obese diabetic (NOD) female mice during early gestation. We monitored maternal glycemic status, birthweight of the offspring, and graft histology to assess the efficacy of transplantation. One hundred and thirteen twelve-week-old NOD female mice were randomized into four groups as follows: (1) non-pregnant NOD mice received a sham operation; (2) non-pregnant NOD mice received neonatal pancreatic transplants; (3) pregnant NOD mice received a sham operation; and (4) pregnant NOD mice received neonatal pancreatic transplants. Pancreas segments from 3 neonatal NOD mice were placed via an incision 1 to 2 mm distal to the ear-skull junction of each of the recipients. Maternal blood glucose and glycated hemoglobin were determined between days 18 and 20 after the surgery. Pups were weighed within 5 to 6 hours after delivery. Pregnant NOD that received transplants (n = 29) had lower glucose and glycated hemoglobin (GHb) than sham operated pregnant controls (n = 26) (4.9 +/- 0.05 versus 9.0 +/- 5.0 mmol/L, p < 0.001 for glucose and 2.0 > or = 0.2 versus 3.0 > or = 1.2%, p < 0.008 for GHb) at 18 to 20 days of gestation. Controlling for litter size showed a decrease in birthweight for offspring of transplant recipients versus offspring of pregnant controls (1.59 +/- 0.08 versus 1.65 +/- 0.08 g, p < 0.002). Histological scoring of transplanted tissue at day 21 indicated that the lymphocytic infiltration in the pregnant group was significantly less than the control group (2.9 +/- 1.2 versus 4.9 +/- 0.2, p < 0.0001). We conclude that the pregnant NOD mouse provides a useful transplant model, that pregnancy provides an opportunity to increase beta-cell mass with transplanted tissue, and that pancreatic transplantation decrease birthweight and macrosomia in the offspring of NOD mice.  相似文献   

15.
In streptozocin (SZ)-induced diabetic mice, 200 islets, but not 50 islets, consistently restore euglycemia within 1 week of transplantation. To determine the minimum number of islets sufficient to maintain euglycemia in a diabetic mouse, we first transplanted 50 and 150 syngeneic islets simultaneously into the right (RK) and left kidney (LK), respectively, and then removed the LK 1 week post-transplantation. The remaining 50 islets maintained euglycemia in 8 of 11 mice with normal intravenous glucose tolerance tests (IVGTT). Protection of 50 islets for at least 7 days was necessary because removal of the 150 islets at 5 or 3 days resulted in a much lower incidence of persistent euglycemia. Similarly, 25 islets were capable of maintaining euglycemia in 2 of 9 mice once hyperglycemia was reversed by split-transplantation of 25 (RK) and 175 (LK) islets. To examine if 50-islet allografts survive longer than 200-islet allografts, we split-transplanted 50 DBA/2 islets in the RK and 150 islets of either B6 (syngeneic), DBA/2 (allogeneic), or C3H/He (third party allogeneic) mouse origin in the LK in 3 groups of diabetic C57BL/6 (B6) mice. The survival of 50 DBA/2 islets in each group after removal of the LK on day 7 was compared to that of 200 DBA/2 islets in control B6 mice. Maximum prolongation of allograft survival was obtained with 50 DBA/2 islets that were split-transplanted with syngeneic B6 islets. These results clearly demonstrate that 50 islets are sufficient to maintain normal glucose tolerance once euglycemia is induced by transplantation of a larger number (i.e., 200) of islets and that 50 islet allografts are much less immunogenic than 200-islet allografts.  相似文献   

16.
The present study demonstrated that a short-term administration of mAbs against leukocyte function-associated antigen-1 (LFA-1) and intercellular adhesion molecule-1 (ICAM-1) at critical periods resulted in complete protection of autoimmune diabetes in non-obese diabetic (NOD) mice. When these mAbs were administered for only 6 days at 2 wk of age, neither diabetes nor insulitis was observed at 30 wk of age. It appears that the tolerance against beta cell Ag(s) was induced by this transient blockade of the LFA-1/ICAM-1 pathway. Protective suppressor activity was not enough to prevent diabetes because co-transfer of splenocytes from female NOD mice, which had received these mAbs at 2 wk of age, resulted in only a short delay of the diabetic onset caused by adoptive transfer of splenocytes from acutely diabetic NOD mice. Transfer of these splenocytes to young NOD mice could not also abrogate the spontaneous diabetes and insulitis. Furthermore, cyclophosphamide treatment could not abrogate the protection. When splenocytes from the treated NOD mice were transferred to NOD-SCID mice, none of the recipient mice developed significant insulitis and subsequent overt diabetes, suggesting the absence or the inactivation of diabetogenic effector T cells. However, splenic T cells from the insulitis-free NOD mice that had received the mAb treatment preserved proliferative responses to both islet cells and 65-kDa glutamic acid decarboxylase (GAD65) in vitro. These results suggest that a unique peripheral tolerance was induced by the transient blockade of the LFA-1/ICAM-1 pathway in an early age of NOD mice.  相似文献   

17.
TGF-beta1, expressed in the pancreatic islets, protects the nonobese diabetic (NOD) mouse from insulin-dependent diabetes mellitus (IDDM). The islet antigen-specific T cell response of ins-TGF-beta1 mice relied on different antigen-presenting cells (APC) from those used by NOD T cells. T cells from NOD mice utilized B cells to present islet antigen, whereas T cells from ins-TGF-beta1 mice utilized macrophages. In addition, the islet antigen-specific T cell repertoire of ins-TGF-beta1 mice was distinct and deviated toward an IL-4-producing Th2 phenotype. When ins-TGF-beta1 mice were treated with anti-iL-4 antibody, islet antigen-specific IFNGamma-producing Th1 cells were unleashed, and the incidence of diabetes increased to the level of NOD mice. This suggests active suppression of a diabetogenic T cell response. This study describes a novel mechanism in which expression of TGF-beta1 in the context of self-antigen shifts APC preference, deviating T cell responses to a Th2 phenotype, preventing IDDM.  相似文献   

18.
Nonobese diabetic mice spontaneously develop diabetes that is caused by autoimmune cell-mediated destruction of pancreatic beta cells. Here we report that surgical removal of 90% of pancreatic tissue before onset of insulitis induced a long-term diabetes-free condition in nonobese diabetic mice. Pancreatectomy after development of moderate insulitis had no effect on the course of diabetes. The effect of pancreatectomy was abrogated with subsequent development of diabetes by infusion of islet-cell-specific T lymphocytes and by transplantation of pancreatic islets. Lymphocytes from pancreatectomized diabetes-free mice exhibited low response to islet cells but responded normally to alloantigens. These results suggest that the islet cell mass plays a critical role in development of autoimmune diabetes.  相似文献   

19.
The NOD mouse is an animal model of IDDM that shows many of the characteristics of human IDDM. It has been proposed that beta-cell destruction in IDDM progresses over time in a linear manner. Recently, we and others have demonstrated that T helper type 1 (Th1) cells have pathogenic roles in the NOD model and proposed that cytokine balances change as the disease progresses. However, it has not been demonstrated how or when the cytokine balances change or how the beta-cell destruction progresses. We have recently demonstrated that the cytokine profiles of CD45RB(low) CD4+ cells correlate either with their pathogenic or with their protective roles in the NOD mouse. To further analyze this apparent correlation between the shift in cytokine level and IDDM, we examined the anti-CD3-induced cytokine profiles of this subset from NOD mice of various ages compared with that from age-matched I-Ak transgenic NOD and BALB/c mice as controls. A significantly higher ratio of anti-CD3-induced interferon-gamma/interleukin-4 was found in diabetic NOD mice (P < 0.0001) but not in age-matched nondiabetic NOD mice. This cytokine ratio did not change significantly until the onset of diabetes in NOD mice. Based upon these results, we propose that IDDM in the NOD mouse progresses as a predominant inflammatory beta-cell dysfunction without actual beta-cell destruction until late in the disease process. This supports the possibility that late-stage immunotherapy may preserve islet beta-cell mass.  相似文献   

20.
The hormone 1 alpha, 25 dihydroxyvitamin D3 (1,25(OH)2D3) has potent immunosuppressive effects in vitro. Recent publications also described a protective effect of the hormone in various animal models of immune-mediated diseases. To test its in vivo activity we induced active Heymann nephritis in Lewis rats that were either untreated or treated with 1,25(OH)2D3 or its synthetic 20-epi analogue, KH1060. Treatment with cyclosporine A (CsA) was used as an immunosuppressive control. In this nephrotic model the administration of 1,25(OH)2D3 (0.5 microgram/kg body weight) given on alternate days during the first 13 days after active immunization significantly reduced the proteinuria as measured by weeks 7-9. This reduction was comparable to the reduction observed in rats treated with CsA (20 mg/kg) on alternate days. A second series of experiments with 1,25(OH)2D3 confirmed these findings. The level of autoantibodies was found to be significantly suppressed during the treatment time in the CsA (20 mg/kg) group, whereas the limit of significance (P = 0.06) was reached in the 1,25(OH)2D3 (0.5 microgram/kg) group. The size of the immune deposits also was found to be substantially smaller in the groups that developed less proteinuria. The administration of 1,25(OH)2D3 transiently increased the mean serum calcium concentration with 2.5 mg/dl above the pretreatment values, and the urinary calcium excretion by a factor of 3-5 during the short treatment time. Treatment with the analogue KH1060 did not reduce the proteinuria significantly. Our experiments add evidence to the hypothesis that 1,25(OH)2D3 in pharmacological doses has immunosuppressive potency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号