首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Physiological and pharmacological data suggest that the rostral ventromedial medulla (RVM) is an important site where integration between somatic and visceral functions might occur. The aim of the present study was to describe the interconnections between various nuclei of the rostral ventromedial medulla and thus reveal the possible anatomical basis for such functional interactions. The topography of anterogradely labelled internal projections was examined following iontophoretic microinjections of Phaseolus vulgaris leucoagglutinin (PHA-L). The results revealed that the nuclei of the rostral ventromedial medulla have strong interconnections and, to varying degrees, they also have bilateral projections into the rostral ventrolateral medulla. A particularly dense projection to widespread regions of the ventral medulla was traced from the raphe obscurus. Terminals, originating from the raphe pallidus were similarly dispersed but very low density in comparison. The focus of the projections of the gigantocellular nucleus pars ventralis and pars alpha shifted from the lateral paragigantocellular nucleus towards the RVM in rostral direction. Connections from the raphe magnus were altogether restricted to the RVM and the medial aspects of the lateral paragigantocellular nucleus. The diffuse and dense intramedullary connections of the raphe obscurus suggest that it might have an important role in coordinating the activity of rostral ventral medullary cells. The raphe pallidus and the ventral gigantocellular nuclei, areas that were innervated from widespread regions of the rostral ventral medulla but gave only limited projections there, are more likely to be involved in the direct descending control of spinal activities.  相似文献   

2.
Within the rostral ventromedial medulla (RVM), there are two classes of putative pain modulation neurons: ON cells and OFF cells, which respectively burst or pause prior to withdrawal reflexes elicited by noxious stimulation. Alpha-adrenergic agonists injected into the RVM produce changes in the latency of spinal nocifensive reflexes and, when iontophoretically applied, alter the firing of RVM ON but not OFF cells. To provide further information about the contribution of norepinephrine to RVM neuron function, we analyzed the distribution of tyrosine hydroxylase immunoreactive (TH-ir) appositions upon RVM ON and OFF cells. In the lightly anesthetized rat, seven ON and five OFF cells were identified by changes in their discharge rate in relation to nociceptive withdrawal reflexes and were labeled by intracellular injection of neurobiotin. Sections containing labeled cells were visualized by using avidin conjugated to a Texas Red fluorophore. Tissue with labeled cells was subsequently processed for TH-ir by using a Bodipy fluorophore conjugated secondary antibody. The distribution of the Bodipy-labeled fibers and terminals upon the Texas Red-labeled neurons was mapped using a confocal laser-scanning microscope. All the labeled neurons exhibited close TH-ir appositions. Appositions were of two types: swellings and fibers. Although the numbers and density of appositions varied among the cells, there were no consistent differences that correlated with physiological properties. Thus the overall density of appositions for ON cells (29.0 +/- 22.2 x 10(4) microns2) did not differ significantly from that for OFF cells (25.4 +/- 22.2 x 10(4) microns2). Tyrosine hydroxylase immunoreactive (TH-ir) appositions upon ON and OFF cells varied with their location along the dorso-ventral axis with more ventral neurons having a greater density of TH-ir swelling-type appositions. In a separate study, TH-ir and dopamine-beta-hydroxylase-like immunoreactivity (DBH-ir) were mapped in the same sections by using confocal microscopy. Nearly 97% of the TH-ir profiles co-localized with DBH-ir. These observations provide evidence that both ON and OFF cells in the RVM are targeted by noradrenergic inputs.  相似文献   

3.
1. The rostral ventromedial medulla (RVM) participates in the modulation of nociceptive transmission by spinal cord neurons. Previous anatomic studies have demonstrated that RVM neurons project to laminae I, II, and V of the dorsal horn; laminae VII and VIII of the intermediate and ventral horns; the intermediolateral column; and lamina X. The RVM contains at least three physiologically defined classes of neurons, two of which, the ON and the OFF cells, have been implicated in nociceptive modulation. Because these cells classes are intermingled in the RVM, it has not been possible to determine the spinal laminar projection targets of ON and OFF cells by anatomic methods. Therefore in the current study we employed antidromic microstimulation methods to determine the laminar projections of two of the three classes of RVM neurons, the ON and the OFF cells. 2. In lightly anesthetized (with methohexital sodium) rats, single-unit extracellular recordings were made from 48 RVM neurons that were physiologically characterized as ON (30) or OFF (18) cells. The recording locations of 45 of these neurons were recovered. Thirty-seven were found in the nucleus raphe magnus and eight were located near its dorsal and lateral borders. 3. Thirty-two physiologically identified RVM neurons (18 ON and 14 OFF cells) were antidromically activated from the cervical spinal cord using a monopolar stimulating electrode. The stimulating electrode was moved systematically in the white matter until antidromic activation could be produced with currents of < or = 20 microA (6.1 +/- 0.7 microA, mean +/- SE). The points from which minimum currents were required to antidromically activate the neurons were located mainly in the ipsilateral dorsolateral funiculus (DLF) (27 of 32). In a few cases, lowest antidromic threshold currents were found near the border between the DLF and ventrolateral funiculus (VLF) or, rarely, in the VLF itself. In these cases, the cell recordings were found to be near the dorsal boundary of the RVM. 4. While one electrode was used to stimulate the parent axon in the lateral funiculus, a second was used to explore the gray matter for the presence of collateral branches. The identification of a branch was initially determined by an increase in antidromic latency. At the same rostrocaudal plane of the spinal cord, stimulation of the DLF induced an antidromic spike that invaded the neuron earlier than the antidromic spike elicited by stimulation in the gray matter. Collateral branches were confirmed by establishing that the location of the minimum threshold point for antidromic activation of the neurons from the second electrode was in the gray matter, that the minimum current required to antidromically activate the neuron from that point was too low to activate the parent axon in the DLF, and that a collision occurred between the spikes induced by the two stimulating electrodes. 5. In 17 cases, physiologically identified RVM neurons (10 ON and 7 OFF cells) were antidromically activated from the gray matter of the cervical spinal cord using a current of 8.4 +/- 2.1 (SE) microA. Minimum threshold points for antidromic activation were found in laminae I-II (3 ON and 4 OFF cells), lamina V (5 ON and 6 OFF cells), and regions ventral to the lateral reticulated area (3 ON and 2 OFF cells) of the gray matter. As indicated by these numbers, some neurons were antidromically activated from more than one gray matter region. In general, all OFF cells and 9 of 10 ON cells were antidromically activated from low threshold points in either laminae I-II or lamina V. 6. In six cases, neurons were activated from separate points located in two or three different laminae of the gray matter. Three OFF cells were activated from laminae I-II and V, one OFF cell and one ON cell were activated from lamina V and from more ventral points, and one ON cell was activated from laminae I-II and from points ventral to lamina V.  相似文献   

4.
A great deal of uncertainty persists regarding the exact nature of the interaction between autonomic nervous system activity and thyroid hormones in the control of heart rate and blood pressure. We now report on thyrotoxicosis produced by daily intraperitoneal (i.p.) injection of L-thyroxine (0.5 mg/kg body wt. in 1 ml of 5 mM NaOH for 5 days). Control rats received i.p. daily injections of the thyroxine solvent. In order to estimate the degree of autonomic activation in hyperthyroidism, specific blockers were administered intravenously: atropine (0.5 mg/kg), prazosin (1 mg/kg), atenolol (1 mg/kg) or the combination of atenolol and atropine. A jet of air was administered in other animals to induce sympathoactivation. Eight animals were studied in each group. The dose and duration of L-thyroxine treatment was sufficient to induce a significant degree of hyperthyroidism with accompanying tachycardia, systolic blood pressure elevation, increased pulse pressure, cardiac hypertrophy, weight loss, tachypnea and hyperthermia. In addition, the intrinsic heart period observed after double blockade (atenolol + atropine) was markedly decreased after treatment with L-thyroxine (121.5+/-3.6 ms vs. 141.2+/-3.7 ms, P < 0.01). Of the autonomic indices, vagal tone (difference between heart period obtained after atenolol and intrinsic heart period) was negatively linearly related to intrinsic heart period (r = 0.71, P < 0.05). Atenolol modified neither the heart period nor blood pressure variability in rats with hyperthyroidism and in these rats the jet of air did not significantly affect the heart period level. The thyrotoxicosis was associated with a reduction of the 0.4 Hz component of blood pressure variability (analyses on 102.4 s segments, modulus 1.10+/-0.07 vs. 1.41+/-0.06 mm Hg, P < 0.01) and prazosin was without effect on this 0.4 Hz component in these animals. These data show a functional diminution of the vascular and cardiac sympathetic tone in early experimental hyperthyroidism. The marked rise in the intrinsic heart rate could be the main determinant of tachycardia. The blood pressure elevation may reflexly induce vagal activation and sympathetic (vascular and cardiac) inhibition.  相似文献   

5.
6.
Long-lasting facilitations of spinal nociceptive reflexes resulting from temporal summation of nociceptive inputs have been described on many occasions in spinal, nonanesthetized rats. Because noxious inputs also trigger powerful descending inhibitory controls, we investigated this phenomenon in intact, halothane-anesthetized rats and compared our results with those obtained in other preparations. The effects of temporal summation of nociceptive inputs were found to be very much dependent on the type of preparation. Electromyographic responses elicited by single square-wave electrical shocks (2 ms, 0.16 Hz) applied within the territory of the sural nerve were recorded in the rat from the ipsilateral biceps femoris. The excitability of the C-fiber reflex recorded at 1.5 times the threshold (T) was tested after 20 s of electrical conditioning stimuli (2 ms, 1 Hz) within the sural nerve territory. During the conditioning procedure, the C-fiber reflex was facilitated (wind-up) in a stimulus-dependent fashion in intact, anesthetized animals during the application of the first seven conditioning stimuli; thereafter, the magnitude of the responses reached a plateau and then decreased. Such a wind-up phenomenon was seen only when the frequency of stimulation was 0.5 Hz or higher. In spinal, unanesthetized rats, the wind-up phenomenon occurred as a monotonic accelerating function that was obvious during the whole conditioning period. An intermediate picture was observed in the nonanesthetized rat whose brain was transected at the level of the obex, but the effects of conditioning were profoundly attenuated when such a preparation was anesthetized. In intact, anesthetized animals the reflex was inhibited in a stimulus-dependent manner during the postconditioning period. These effects were not dependent on the frequency of the conditioning stimulus. Such inhibitions were blocked completely by transection at the level of the obex, and in nonanesthetized rats were then replaced by a facilitation. A similar long-lasting facilitation was seen in nonanesthetized, spinal rats. It is concluded that, in intact rats, an inhibitory mechanism counteracts the long-lasting increase of excitability of the flexor reflex seen in spinal animals after high-intensity, repetitive stimulation of C-fibers. It is suggested that supraspinally mediated inhibitions also participate in long term changes in spinal cord excitability after noxious stimulation.  相似文献   

7.
Spinally projecting neurons of the ventromedial medulla (VMM) compose an important efferent pathway for the modulation of nociception. These neurons receive a substantial gamma-aminobutyric acid (GABA)-ergic input, but the GABA receptor that mediates this input is unknown. This study examined the distribution of GABA(A) receptor alpha1 and alpha3 subunits in serotonergic and nonserotonergic neurons of the VMM that project to the dorsal horn in the rat. A pledget of Gelfoam soaked in Fluoro-Gold was placed at the thoracolumbar junction of the spinal cord to label spinally projecting neurons. Alternate sections of the medulla were then incubated with a mixture of antisera to either serotonin and the alpha1 subunit, or to serotonin and the alpha3 subunit of the GABA(A) receptor. Nearly 30% of spinally projecting neurons in the VMM were immunoreactive for the alpha1 subunit. A similar percentage of spinally projecting neurons in the VMM were immunoreactive for the alpha3 subunit, although diffuse cellular labeling combined with intense staining of processes in the neuropil precluded a rigorous semi-quantitative estimation of this population. No alpha1-subunit-immunoreactive neurons colocalized serotonin. In contrast, serotonergic neurons were immunoreactive for the alpha3 subunit. However, these double-labeled neurons were a modest percentage of the serotonergic population. A small percentage of spinally projecting serotonergic neurons was immunoreactive for the alpha3 subunit. These results suggest that significant numbers of spinally projecting serotonergic and nonserotonergic neurons of the VMM possess GABA(A) receptors that differ in their respective subunit compositions and that both classes of neurons may mediate the antinociception produced by the microinjection of GABA(A) receptor antagonists in the VMM.  相似文献   

8.
9.
Microinjection of angiotensin II and III into the rostral ventrolateral medulla of anesthetized barodenervated rabbits elicited in both cases pressor responses, which were of similar magnitude and time course. The responses to angiotensin II and III were either unchanged or increased in the presence of compounds which inhibit their degradation to shorter length peptides. The results indicate that both angiotensin peptides are independently capable of eliciting pressor responses in the rostral ventrolateral medulla.  相似文献   

10.
The effects of V4, MT, and combined V4 + MT lesions were assessed on a broad range of visual capacities that included measures of contrast sensitivity, wavelength and brightness discrimination, form vision, pattern vision, motion and flicker perception, stereopsis, and the selection of stimuli that were less prominent than those with which they appeared in stimulus arrays. The major deficit observed was a loss in the ability, after V4 lesions, to select such less prominent stimuli; this was the case irrespective of the manner in which the stimulus arrays were made visible, using either luminance, chrominance, motion, or stereoscopic depth as surface media. In addition, V4 lesions yielded mild deficits in color, brightness, and form vision whereas MT lesions yielded mild to moderate deficits in motion and flicker perception. Both lesions produced mild deficits in contrast sensitivity, shape-from-motion perception, and yielded increased reaction times on many of the tasks. The impairment resulting from combined V4 and MT lesions was not greater than the sum of the deficits of either lesion. None of the lesions produced significant deficits in stereopsis. The findings suggest that (1) area V4 is part of a neural system that is involved in extracting stimuli from the visual scene that elicit less neural activity early in the visual system than do other stimuli with which they appear and (2) several other extrastriate regions and more than just two major cortical processing streams contribute to the processing of basic visual functions in the extrastriate cortex.  相似文献   

11.
Noradrenaline and adrenergic agonists were tested on pacemaker-like and silent neurons of the rat rostral ventrolateral medulla using intracellular recording in coronal brainstem slices as well as in punches containing only the rostral ventrolateral medullary region. Noradrenaline (1-100 microM) depolarized or increased the frequency of discharge of all cells tested in a dose-dependent manner. The noradrenaline-induced depolarization was associated with an apparent increase in cell input resistance at low concentrations and a decrease or no significant change at higher concentrations. Moreover, it was voltage dependent and its amplitude decreased with membrane potential hyperpolarization. Noradrenaline caused a dose-related increase in the frequency and amplitude of spontaneous inhibitory postsynaptic potentials. The alpha 1-adrenoceptor antagonist prazosin (0.5 microM) abolished the noradrenaline depolarizing response as well as-the noradrenaline-evoked increase in synaptic activity and unmasked an underlying noradrenaline dose-dependent hyperpolarizing response associated with a decrease in cell input resistance and sensitive to the alpha 2-adrenoceptor/antagonist yohimbine (0.5 microM). The alpha 1-adrenoceptor agonist phenylephrine (10 microM) mimicked the noradrenaline depolarizing response associated with an increase in membrane resistance as well as the noradrenaline-induced increase in synaptic activity. The alpha 2-adrenoceptor agonists UK-14,304 (1-3 microM) and clonidine (10-30 microM) produced only a small hyperpolarizing response, whereas the beta-adrenoceptor agonist isoproterenol (10-30 microM) had no effect. Baseline spontaneous postsynaptic potentials were abolished by strychnine (1 microM), bicuculline (30 microM) or both. However, only the strychnine-sensitive postsynaptic potentials had their frequency increased by noradrenaline or phenylephrine and they usually occurred with a regular pattern. Tetrodotoxin (1 microM) eliminated 80-95% of baseline spontaneous postsynaptic potentials and prevented the increase in synaptic activity evoked by noradrenaline and phenylephrine. Similar results were obtained in rostral ventrolateral medulla neurons impaled in both coronal slices and punches of the rostral ventrolateral medulla. It is concluded that noradrenaline could play an important inhibitory role in the rostral ventrolateral medulla via at least two mechanisms: an alpha 2-adrenoceptor-mediated hyperpolarization and an enhancement of inhibitory synaptic transmission through activation of alpha 1-adrenoceptors located on the somatic membrane of glycinergic interneurons. Some of these interneurons exhibit a regular discharge similar to the pacemaker-like neurons and might, at least in part, constitute a central inhibitory link in the baroreceptor-vasomotor reflex pathway.  相似文献   

12.
The aim of this study, conducted in anaesthetized rats, was to examine the morphology of barosensitive neurons in the rostral ventrolateral medulla and their immunoreactivity for a catecholamine synthesizing enzyme, tyrosine hydroxylase. Thirty neurons displaying inhibitory postsynaptic potentials following stimulation of the aortic depressor nerve were intracellularly labelled with Lucifer Yellow or Neurobiotin. Some of these neurons could be excited antidromically from the second thoracic segment of the spinal cord, with conduction velocities of spinal axons ranging from 1.9 to 7.2 m/s. The filled somas were found immediately caudal to the facial nucleus and ventral or ventromedial to compact formation of the nucleus ambiguus. Some dendrites reached the ventral medullary surface. Axons usually projected dorsomedially and then made a sharp rostral and/or caudal turn. The caudally projecting axon could, in some cases, be followed to the first cervical segment of the spinal cord. Seven cells issued fine axon collaterals on the ipsilateral side. These were identified mainly in two areas: in the rostral ventrolateral medulla (or immediately dorsomedial to that region), and within the dorsal vagal complex. Seven of 27 examined cells (26%) were tyrosine hydroxylase-immunoreactive and were classified as C1 adrenergic neurons. No clear relationship was found between the presence or absence of adrenergic phenotype and the morphology of filled cells. However, the amplitude of aortic nerve-evoked inhibitory postsynaptic potentials was significantly larger in tyrosine hydroxylase-positive neurons. Possible reasons for the low percentage of barosensitive cells with tyrosine hydroxylase immunoreactivity found in this study, in comparison with previously published estimates, are discussed. This is the first study describing the morphology of neurons in this part of the medulla identified as barosensitive in vivo, and directly demonstrating adrenergic phenotype in a subset of these neurons.  相似文献   

13.
Daily injections of amphetamine during 3 weeks into the rat caudal and rostral neostriatum impaired avoidance conditioning of rats in shuttle box. The data obtained suggests involvement of both parts of the neostriatum's dopaminergic system in avoidance conditioning and complex behavioural actions in rats.  相似文献   

14.
A model of temporal summation and intensity coding relates the subject's internal percept y(t) to the stimulus input x(t) by the equation y(t) = g(St - oof[x(tau)] h [t, tau, x (tau)]d tau). In words, some transformation f[x (t)] of the stimulus intensity is weighted by a function h and integrated; the result is transformed into the internal percept by a function g. This system postulates a linear integral operator preceded and followed by transformations which may be nonlinear. Based on forward masking of clicks by white noise, we (1) show that the above characterization of the model is appropriate (which involves showing that there is a linear temporal summation stage), and (2) derive certain characteristics of the system's nonlinearities. In particular, the integral of h times f is shown to be a nonlinear function of the input intensity exhibiting more compression than a power function. It is also shown that h must depend upon the intensity of the stimulus.  相似文献   

15.
In rats, the jaw-opening reflex is elicited by activation of a nociceptive receptor by the electric stimulation of the tooth pulp. This study was undertaken to assess the effects of 30% nitrous oxide and 30% nitrous oxide with idazoxan, an alpha 2-adrenergic antagonist, on this reflex. Each rat received electric stimulation for the jaw-opening reflex at 3, 5, 7, 10, 15, and 20 min after both the start of inhalation and the withdrawal of 100% oxygen or 30% nitrous oxide in oxygen. Idazoxan, 400 micrograms/ kg, was administered intravenously at the start of the inhalation period. Amplitudes significantly decreased during inhalation of nitrous oxide, but they returned gradually to control levels after cessation of nitrous oxide inhalation. In the cases of 100% oxygen, 100% oxygen with idazoxan, and 30% nitrous oxide in oxygen with idazoxan, amplitudes did not change from controls during and after 30% nitrous oxide inhalation. The latency remained unchanged irrespective of the treatment. Since in rats the degree of inhibition by 30% nitrous oxide in oxygen is partially diminished by administration of idazoxan, we conclude that nitrous oxide affects an alpha 2-adrenergic receptor in the central nervous system.  相似文献   

16.
17.
In the mammalian brain, kynurenine aminotransferase (KAT) is pivotal to the synthesis of kynurenic acid, a preferential antagonist at the strychnine-insensitive NMDA-glycine site. As NMDA receptors are involved in autonomic function, we have examined the immunohistochemical localization of KAT in the medulla and spinal cord of the rat. KAT immunoreactivity (KAT-li) was found throughout these areas, in both glia and neurons. Unlike the mainly astrocytic localization in forebrain structures, KAT-li was predominantly neuronal, notably in areas important for blood pressure and heart rate regulation: ventral medulla, nucleus ambiguus, nucleus of the solitary tract and intramediolateral cell column of the spinal cord. The presence of KAT in these nuclei supports a neuromodulatory role for kynurenic acid in NMDA-mediated autonomic function.  相似文献   

18.
19.
20.
Electroencephalographic activity (EEG) was recorded from the frontal cortex of unanaesthetized and urethane-anaesthetized lactating rats and analysed in relation to the pattern of milk ejection evoked by the nursing pups. The EEG of the anaesthetized rat fluctuated without experimental intervention between three distinctive patterns defined as synchronized, desychronized, and stage III activity, whilst reflex milk ejection recurred at intervals of about 6 min (range 2- greater than 20 min) throughout the 1-4 h period the pups were left attached to the nipples. For greater than 10 s before and for up to 60 s after each milk ejection, as judged from recordings of intramammary pressure and pup behaviour, the EEG was invariably synchronized throughout. Conversely, milk ejection (n greater than 300) was never observed during long periods of desynchronized, or stage III EEG activity. The vigorous increase in the sucking of the pups at milk ejection failed to produce a desynchronization (arousal) of the EEG as observed with other forms of sensory stimulation. Indeed, the sucking of the pups appeared to produce a soporific change i, the maternal EEG for spontaneous periods of desynchronization were not observed in the 30-60 min following the initial attachment of the pups to the nipples. Similar EEG patterns were seen in the unanaesthetized rat, though arousal from the synchronized state was more easily produced, e.g., by weak auditory signals. Milk ejection, as judged from the behaviour of the pups, recurred at intervals of 2 min or more during each 20-80 min period of nursing. The rat appeared somnolent for most of the nursing period and the EEG was always synchronized for greater than 10 s before each milk ejection (n greater than 200), though her eyes usually remained open. Arousal and desynchronization of the EEG was invariably observed in association with the increased pup behaviour at milk ejection. From these observations and the knowledge that oxytocin release from the neurohypophysis occurs about 10 s before milk ejection, we conclude that a synchronized EEG pattite for the expression of the milk-ejection reflex in the rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号