首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
采用粒子图像测速技术对安装三叶片转子的圆管、安装两叶片转子的圆管及光管进行实验研究,获得了换热管内流场的分布情况. 结果表明,圆管内安装小导程三叶片转子的轴向速度沿径向的分布与圆管内安装两叶片转子差异不明显,均呈近M型分布,但径向速度沿径向的分布明显大于两叶片转子,且湍动能沿径向的分布也高于两叶片转子. 以湍动能的衰减长度作为表征单个转子的作用范围量,在管内放置单个转子后,湍动能逐渐衰减,并在经过约10 mm距离后稳定在一恒定值附近,因此,认为洁能芯转子的作用范围长度为10 mm,这对工业应用具有重要意义.  相似文献   

2.
用PIV技术测定双轴搅拌釜的流场   总被引:4,自引:1,他引:4  
利用 PIV (即粒子图像测速 )来测量双轴搅拌釜的流场 ,并以此分析该搅拌器的搅拌特点和一般规律及适合工况。  相似文献   

3.
双层翼型桨搅拌槽内流动特性的PIV研究   总被引:1,自引:0,他引:1  
在直径0.476 m的搅拌槽内,采用粒子图像测速技术对双层三叶CBY翼型桨搅拌槽内的流场进行了研究,考察了层间距、浸没深度和离底高度等参数对流场分布的影响. 结果表明,层间距H2≤0.6T(T为搅拌槽直径)时,槽内可形成整体的轴向循环流动,H2≥0.7T时槽内将产生分区流动现象. 浸没深度对桨叶排出流区域的速度影响很小. 降低下层桨的离底高度能加强下层桨的径向流动,并增大上层桨叶轮区和循环区流体的轴向流动.  相似文献   

4.
T型撞击流混合器内流动特性的PIV研究   总被引:1,自引:0,他引:1  
采用粒子图像测速技术对入射管直径为3 mm、混合腔直径为16 mm的T型撞击流混合器内的流动特性进行了研究,考察了不同流速比和撞击轴线上方空间条件下混合腔内的速度和湍流动能分布. 结果表明,在相同入射管直径和流速下,撞击驻点位于混合腔中心处,无因次化的速度和湍流动能分布趋势基本一致. 高湍流动能区主要集中在撞击点附近区域,其无因次化数值是传统Rushton涡轮搅拌槽叶端处的3倍. 流速比对撞击驻点位置影响显著;减小撞击轴线上方空间可增加高湍流动能分布区域,利于物料混合.  相似文献   

5.
振动圆管外流场的PIV实验研究及场协同分析   总被引:3,自引:1,他引:2       下载免费PDF全文
姜波  田茂诚  邱燕  唐玉峰  程林 《化工学报》2009,60(8):1900-1905
采用粒子图像测速(PIV)与CFD动网格相结合的方法,对振动圆管外近壁区流场进行了实验及模拟研究,得到了振幅1.3 mm、频率5~25 Hz范围内的管外流场速度矢量图,计算了不同工况下管外流场的平均场协同角余弦值。实验及模拟结果表明:振动能够显著增加管外近壁区的流体速度,能够在振动方向上的管壁两侧形成有效的冲刷,随着振动频率的升高其管外近壁区的平均速度近似呈线性增加,在共振点出现峰值;相同区域内振动工况的平均场协同角余弦值要明显大于无振动工况,但不同振动频率间的场协同角余弦值变化较小。同时,基于场协同分析初步提出了改善振动表面对流换热的措施。  相似文献   

6.
粒子图像测速(PIV)技术被尝试用于测量循环流化床内颗粒运动,运用二值化互相关图像处理算法,得出了流场中粒子的轴向速度及水平方向速度分布图,并分析了粒子运动的变化规律。测试结果较好地反映了循环流化床内颗粒流动的一些特性,表明PIV技术在循环流化床气固两相流体特性研究中具有较好的应用前景。  相似文献   

7.
王鲁敏  潘家祯李程 《化工机械》2005,32(5):288-290,301
针对搅拌釜流场研究的需要,研究开发了基于粒子图像测速技术的搅拌釜流场测试系统,并用该测试系统对自行设计的搅拌釜流场进行了测定。  相似文献   

8.
通过粒子图像测速流场实验与传热实验相结合,研究了内插螺旋立式上行管的螺旋节距、丝径、中径比等结构参数在不同Re下对流场、阻力及传热性能的影响。结果表明,内插螺旋能够有效扰动和混合管内流体,使管内形成多个纵向旋涡的流体结构、增大管壁附近液体涡量,有利于强化传热。当Re相同时,管内平均流速v、Nu和综合换热性能PEC均随丝径增大而增大,随中径比减小而增大;随节距增大,3种参数均出现增大的趋势,节距大于20 mm后开始减小。管内流体的阻力f随丝径和节距增大而减小,随中径比增大而增大。综合比较,在较低Re时,节距p=20 mm、丝径e=1.6 mm、中径比D/d=0.75时综合传热效果最好。  相似文献   

9.
汉京晓  周国兵 《化工学报》2013,64(8):2774-2780
在Re=700、攻角α=60°时,利用粒子图像测速技术(PIV)研究了矩形通道内平直和柱面小翼诱发的流动结构,获得涡发生器(VG)后1~3倍弦长距离的速度场和涡量场。结果表明,三角小翼的涡结构主要分布在斜边中心和后缘角区;梯形和矩形小翼的涡结构主要分布在前缘翼梢区域和后缘区域;此外,柱面梯形小翼中心区域的涡结构明显,影响范围最大。随着流动的进行,涡结构强度逐渐减弱,三角小翼仅维持一个主涡向下继续运动;梯形和矩形小翼也仅维持一个主涡和一个后缘角涡的结构。随着斜截角的减小,前缘和中心区域诱发高强度涡结构的能力增强,影响范围也广,而后缘角涡的影响范围较小,且与底部壁面的距离较远。  相似文献   

10.
尚灵祎  吴峰  马晓迅 《化工学报》2018,69(5):1923-1930
针对喷动床内环隙区颗粒缺少横/径向运动的特点,通过实验将纵向涡流发生器及纵向涡流效应引入喷动床。采用粒子图像测速技术研究了在内径为152 mm的喷动床内纵向涡流及颗粒设计参数对喷动床内喷射区及环隙区颗粒相径向速度的影响,研究结果表明,纵向涡发生器在扰流元件上方横截面内颗粒相运动出现大量二次涡流,相比较于无纵向涡流扰流件情况,喷动床内的颗粒径向速度得到了显著增加,表明纵向涡发生器能够增强颗粒相在喷射区及环隙区的径向运动能力。在喷动床稳定喷动范围内,颗粒直径及颗粒密度越小,纵向涡流对颗粒相径向运动的强化效果越佳。  相似文献   

11.
The turbulence structure in the stirred tank with a deep hollow blade (semi-ellispe) disc turbine (HEDT) was investigated by using time-resolved particle image velocimetry (TRPIV) and traditional PIV. In the stirred tank, the turbulence generated by blade passage includes the periodic components and the random turbulent ones. Traditional PIV with angle-resolved measurement and TRPIV with wavelet analysis were both used to obtain the random turbulent kinetic energy as a comparison. The wavelet analysis method was successfully used in this work to separate the random turbulent kinetic energy. The distributions of the periodic kinetic energy and the random turbulent kinetic energy were obtained. In the impeller region, the averaged random turbulent kinetic energy was about 2.6 times of the averaged periodic one. The kinetic energies at different wavelet scales from a6 to d1 were also calculated and compared. TRPIV was used to record the sequence of instantaneous velocity in the impeller stream. The evolution of the impeller stream was observed clearly and the sequence of the vorticity field was also obtained for the identification of vortices. The slope of the energy spectrum was approximately &;#61485;5/3 in high frequency representing the existence of inertial subrange and some isotropic properties in stirred tank. From the power spectral density (PSD), one peak existed evidently, which was located at f0 (blade passage frequency) generated by the blade passage.  相似文献   

12.
13.
运用粒子图像测速仪(PIV)技术测量了一拟二维气升式环流反应器内液相流动状态。避开了气液两相成像带来的图像处理困难。成功测取了时均液相速度、瞬时雷诺应力、剪切应力等在反应器下降段内的分布;考察了反应器上升段进气量和反应器液位高度对液相循环速度的影响;同时,对反应器三个具有代表性的流动部分进行了观测,获得了该反应器内液相流场具有代表性意义的速度分布图。研究结果为认识该类反应器的性能及进行反应器设计、优化提供了有价值的参考信息。  相似文献   

14.
The flow fields surrounding two parallel moving bubbles rising from two identical orifices submerged in non-Newtonian fluid of carboxymethylcellulose (CMC) solution of three different mass concentration were measured experimentally by the use of particle image velocimetry (PIV). The influences of gas flowrate, solution mass concentration, orifice interval and the angle between two bubble centers line and vertical direction on the flow field surrounding bubbles were discussed respectively by analyzing the velocity vector, velocity contours as well as individual velocity components. The results show that the liquid velocity both in front of two bubbles and behind increases with gas flowrate duo to shear-thinning effect of previous bubbles, whereas decreases with the increase of CMC concentration due to the increase of drag force acting on bubbles. The effect of the orifice interval on the flow field around two moving bubbles becomes gradually obvious as the interval becomes closer. Moreover, two adjacent side-by-side bubbles repulse each other during rising, leading to the practical interval between them increased somewhat above the orifice interval. When the distance between bubbles is less than the orifice interval l0 mm, the interaction between two neighboring bubbles changed from mutual repellence to attraction with the decrease of the angle of the line of linking two bubble centers to the vertical direction.  相似文献   

15.
旋风分离器内旋进涡核的PIV显示   总被引:1,自引:0,他引:1  
The precessing vortex core (PVC) in a cyclone separator plays an important role in the separation performance and in further understanding of the general law of periodic unsteady flow therein. In this paper, the unsteady flow field is investigated with particle image velocimetry (PIV), and the instantaneous velocity, vorticity,tangential velocity, and radial velocity are acquired by analyzing the images of instantaneous flow. It is for the first time reported that there is a centrifugal flow region close to the dust discharge zone and its maximum value is higher than the mean radial velocity. This discovery is very important for understanding the principle of separation of particles in the area of dust discharge. Determination of the frequency and amplitude of PVC was conducted in the region where the phenomenon of PVC is remarkable. Results agree well with those obtained by hot wire anemometry. The observations of the center of “cortex core and the bimodal distribution of the amplitude of the PVC indicate the vortex core precesses around the geometric axis of the cvclone in its own way.  相似文献   

16.
Rotor-assembled strand works as a typical tube insert to achieve heat transfer augmentation and scale inhibition in a heat exchanger. In this work, the PIV experiment regarding the flow fields in a circular tube inserted with rotor-assembled strand was conducted and the flow characteristics on transverse section and longitudinal section were analyzed. The results showed that swirling flow was produced in the tube inserted with rotors and it was particularly strong within the swing diameter of the rotor on the section that contains the rotor; the average turbulence intensity and the radial velocity were improved notably; the velocity vectors on the longitudinal section remained along the direction of a straight line; both the swirling flow and average turbulence intensity were higher for the rotor with three blades than for the rotor with two blades except that the radial velocity was approximate, but they were all reduced by enlarging the lead of the rotor. Characterization of the flow patterns in a circular tube contributes to understanding the heat transfer efficiency and scale inhibition performance of the rotor-assembled strand and provides guidance for its application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号