首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The heat-transfer characteristics of an insulated long rectangular or square duct are analyzed by using the one-dimensional plane wedge thermal resistance (PWTR) model and plate thermal resistance (PTR) model in this study. It is found that the errors generated by the PWTR model are all positive and the errors generated by the PTR model are all negative. Thus, the combined plate wedge thermal resistance (CPWTR) model generated by paralleling PWTR and PTR models with the proportion factors of α=0.6 vs. β=0.4 (64-CPWTR model) can neutralize the positive and negative errors and obtain very accurate results in comparison with the two-dimensional numerical solutions analyzed by the CFD software. The errors generated by the one-dimensional 64-CPWTR model are within 1% for practical sizes and practical insulated thickness in air conditioning and refrigeration systems. Thus, the engineer can obtain very reliable heat transfer results when applying the one-dimensional 64-CPWTR model to an insulated rectangular duct.  相似文献   

2.
The refrigerant circuitry influences a heat exchanger's attainable capacity. Typically, a design engineer specifies a circuitry and validates it using a simulation model or laboratory test. The circuitry optimization process can be improved by using intelligent search techniques. This paper presents experiments with a novel intelligent optimization module, ISHED (Intelligent System for Heat Exchanger Design), applied to maximize capacity through circuitry design of finned-tube condensers. The module operates in a semi-Darwinian mode and seeks refrigerant circuitry designs that maximize the condenser capacity for specified operating conditions and condenser slab design constraints. Examples of optimization runs for six different refrigerants are included. ISHED demonstrated the ability to generate circuitry architectures with capacities equal to or superior to those prepared manually, particularly for cases involving non-uniform air distribution.  相似文献   

3.
This paper presents the heat and mass transfer characteristics of the humid airflow in frosting conditions. A flat plate of aluminum with cooling modules at the central region was used for the simulation of flat surface part of the fin of the heat exchanger. The local surface temperature of the plate and the local thickness and total mass of the frost on the plate were measured to analyze the heat and mass transfer characteristics. In order to analyze the frosting characteristics, an analysis algorithm was developed, which can provide the local air temperature, the frost surface temperature, the sensible and the latent heat flux distributions at the test plate. Also, by integrating the local heat flux distribution, the average heat flux characteristics were analyzed. The present experiment and analysis found that the characteristic of the upstream airflow was very different from that of the downstream airflow.  相似文献   

4.
Evaporative cooling is used in industrial and air conditioning processes to reduce temperature in different fluids. Direct evaporation systems can lead to environmental problems such as Legionnaire's disease, and indirect systems reduce system efficiency.This work presents the manufacture, test bed set up and trials carried out on a ceramic evaporative cooling system which acts as a semi-indirect cooler. Depending on air characteristics, it may act as a sensible or enthalpic exchanger. The water cooled in a cooling tower, using the return air coming from the conditioned room (22 °C and 50% comfort conditions) goes through the ceramic pipes, exchanging sensible and latent heat with a current of outdoor air.The use of this recovery system is mainly in climates with a high temperature and humidity such as tropical environments where the system yields a decrease in supply air humidity, using the cooling power of return air.The tests presented show the system behaviour for various supply air conditions.  相似文献   

5.
Sensitivity analysis can be used to identify important model parameters, in particular, normalized sensitivity coefficients; by allowing a one-on-one comparison. Regarding design of evaporative coolers, the sensitivity analysis shows that all sensitivities are unaffected by varying the mass flow ratio and that outlet process fluid temperature is the most important factor. In rating evaporative coolers, effectiveness is found to be most sensitive to the process fluid flow rate. Also, the process fluid outlet temperature is most sensitive to the process fluid inlet temperature. For evaporative condensers, the normalized sensitivity coefficient values indicate that the condensing temperature is the most sensitive parameter and that these are not affected by the value of the mass flow ratio. For evaporative condenser design, it was seen that, for a 53% increase in the inlet relative humidity, the normalized sensitivity of the surface area increased 1.8 times in value and, for a 15 °C increase in the condenser temperature, the sensitivity increased by 3.5 times. The performance study of evaporative condensers show that, for a 72% increase in the inlet relative humidity, the normalized sensitivity coefficient for effectiveness increased 2.4 times and, for a 15 °C increase in the condenser temperature, it doubled in value.  相似文献   

6.
Exhaust air heat recovery in buildings   总被引:2,自引:0,他引:2  
The technique of heat recovery from ventilation air in dwellings started in Sweden in late 1979. This was due to an energy crisis and new building codes. The competing heat recovery system, air to air heat exchangers, had a firm grip on the market. Today the situation is on the contrary. Almost all new single family houses are equipped with exhaust air heat pumps. This paper describes the development of the market in Sweden and Germany and also the different techniques of supplementary heating due to national differences in electricity prices. Germany has a situation very similar to Sweden concerning new building codes concerning the allowable energy use for space heating. Starting in 1976 and continued from 1982 to 1995, the building code has prescribed tighter and more insulated houses. The new building code for the year 2000 contains requirements for well insulated and tight buildings so the energy demand for heating from ventilation air tends to reach about 60% of the total annual energy demand for the building. Under these circumstances new buildings must have ventilation systems with heat recovery. Different means of heat recovery from the ventilation system, and the benefit for the environment, by using heat pumps are described. The German market for heat recovery systems is approx. 5–10.000 units/year. Most important for the efficiency of a ventilation system is to maintain the quality criterias concerning:equipmentplanning, installation, taking into operationoperation.VEW ENERGIE AG has accomplished a field survey of 60 units from 1994 to 1996. As the result was not statistically sufficient, the field survey is followed by an investigation into air quality and reliability.  相似文献   

7.
Recently, as one of the countermeasures against the global warming and energy conservation problems, natural refrigerants such as CO2 are now paid attention as substitutes for HFCs in automotive air conditioning systems. Also, in recent years because the heat release from the eco-car's engine decreases, there is a problem that the present automotive heating air conditioning system cannot provide sufficient heating capacity.

As an alternative approach, we focused on a solution utilizing a CO2-based heat pump, whereby the waste heat from the heat pump cycle during dehumidification of the incoming air (referred to as the dehumidifying condition) is recovered and used as an auxiliary heat source instead of an electric heater. Based on this concept, we aimed to develop an effective automotive cooling and heating air conditioning system using CO2 as a refrigerant.

As the result, a prototype CO2 automotive cooling and heating air conditioning system for medium-sized cars was successfully developed. With this system, performance superior to that of the present HFC134a system can be achieved.  相似文献   


8.
An analysis was carried out to study the efficiency of annular fin when subjected to simultaneous heat and mass transfer mechanisms. The temperature and humidity ratio differences are the driving forces for the heat and mass transfer, respectively. Analytical solutions are obtained for the temperature distribution over the fin surface when the fin is fully wet. The effect of the atmospheric pressure on the fin efficiency was also studied, in addition to fin optimum dimensions. It is demonstrated that the closed-form solutions for a dry-fin case presented in many text books are special cases for the solutions presented in this paper.  相似文献   

9.
This is the second paper of a series that assesses the performance of a refrigeration system model by means of cycle parameters. In this case, the condensation temperature is the parameter to study and it is focused on fin and tube condensers. It also studies the influence of the heat transfer models on the estimation of this refrigeration cycle parameter and different correlations for the heat transfer coefficients have been implemented in order to characterise the heat transfer in the heat exchangers. The flow inside the heat exchangers is considered one-dimensional as in previous works. In the cycle definition, other submodels for all the cycle component have been taken into account to complete the system of equations that characterises the behaviour of the refrigeration cycle. This global system is solved by means of a Newton–Raphson algorithm and a known technique called SEWTLE is used to model the heat exchangers. Some experimental results are employed to compare the condensation temperatures provided by the numerical procedure and to evaluate the performance of each heat transfer coefficient. These experimental results correspond to an air-to-water heat pump and are obtained by using R-22 and R-290 as refrigerants.  相似文献   

10.
A simulation and design tool to improve effectiveness and efficiency in design, and analysis of air to refrigerant heat exchangers, CoilDesigner, is introduced. A network viewpoint was adopted to establish the general-purpose solver and allow for analysis of arbitrary tube circuitry and mal-distribution of fluid flow inside the tube circuits. A segment-by-segment approach within each tube was implemented, to account for two-dimensional non-uniformity of air distribution across the heat exchanger, and heterogeneous refrigerant flow patterns through a tube. Coupled heat exchangers with multiple fluids inside different subsets of tubes can be modeled and analyzed simultaneously. A further sub-dividing-segment model was developed in order to address the significant change of properties and heat transfer coefficients in the single-phase and two-phase regime when a segment experiences flow regime change. Object-oriented programming techniques were applied in developing the program to facilitate a modular, highly flexible and customizable design platform and in building a graphic user-friendly interface. A wide variety of working fluids and correlations of heat transfer and pressure drop are available at the user's choice. The model prediction with CoilDesigner was verified against experimentally determined data collected from a number of sources.  相似文献   

11.
The mathematical models of evaporative fluid coolers and evaporative condensers are studied in detail to perform a comprehensive design and rating analysis. The mathematical models are validated using experimental as well as numerical data reported in the literature. These models are integrated with the fouling model presented in an earlier paper, using the experimental data on tube fouling. In this paper, we use the fouling model to investigate the risk based thermal performance of these evaporative heat exchangers. It is demonstrated that thermal effectiveness of the evaporative heat exchangers degrades significantly with time indicating that, for a low risk level (p=0.01), there is about 66.7% decrease in effectiveness for the given fouling model. Furthermore, it is noted that there is about 4.7% increase in outlet process fluid temperature of the evaporative fluid cooler. Also, a parametric study is performed to evaluate the effect of elevation and mass flow rate ratio on typical performance parameters such as effectiveness for rating calculations while surface area for design calculations.  相似文献   

12.
This study presents theoretical investigation on the performance of air cycle refrigerator driving air conditioning system integrated desiccant system. Total system performance is evaluated and the system feasibility is examined. The system has such characteristics that (1) safe material of air and water are used as a refrigerant, (2) waste heat from air cycle refrigerator performs the regeneration of desiccant material for energy saving. It has been clarifying that (1) controlling the evaporative cooling process in air washer, the system can operate for a wide range of cooling loads, (2) the total coefficient of performance on air conditioning system is better than the conventional vapor compression system with reheating coil, and (3) the system performance highly depends on the ratio of the amount of outdoor intake air to the supply air.  相似文献   

13.
Airside heat and mass transfer and fluid flow characteristics of a wavy-finned-tube direct expansion air coil under cooling and dehumidifying condition have been experimentally investigated. Experiments were carried out to study the effects of operating conditions such as: air temperature, air relative humidity, air face velocity, and evaporator pressure on the airside performance (cooling capacity, dehumidification capacity, pressure drop, and heat transfer coefficient) of the coil. Charts for coil wet conditions, partially wet or totally wet, were conducted to identify the coil wet conditions in terms of the operating conditions. Two techniques, enthalpy potential method and equivalent dry-bulb temperature method, were used to analyze the data and to deduce correlations for Colburn factors for the different coil wet conditions. Comparison between the correlations predictions of the two techniques was presented.  相似文献   

14.
Hot gas defrost model development and validation   总被引:5,自引:0,他引:5  
This paper describes the development, validation, and application of a transient model for predicting the heat and mass transfer effects associated with an industrial air-cooling evaporator during a hot gas defrost cycle. The inputs to the model include the space dry bulb temperature, space humidity, coil geometry, frost thickness, frost density, and hot gas inlet temperature. The model predicts the time required for a complete frost melt as well as the sensible and latent loads transferred back to the conditioned space during the defrost period. The model is validated by comparing predicted results to actual defrost cycle field measurements and to results presented in previously published studies.A unique contribution of the present model is its ability to estimate parasitic space loads generated during a defrost cycle. The parasitic energy associated with the defrost process includes thermal convection, moisture re-evaporation, and extraction of the stored energy in the coil mass following a defrost cycle. Each of these factors contribute to the parasitic load on compressors connected to the defrost return. The results from the model provide quantitative information on evaporator operation during a defrost cycle which forms the basis to improve the energy efficiency of the defrost process.  相似文献   

15.
In most domestic and commercial refrigeration systems, frost forms on the air-side surface of the air-to-refrigerant heat exchanger. Frost-tolerant designs typically employ a large fin spacing in order to delay the need for a defrost cycle. Unfortunately, this approach does not allow for a very high air-side heat transfer coefficient, and the performance of these heat exchangers is often air-side limited. Longitudinal vortex generation is a proven and effective technique for thinning the thermal boundary layer and enhancing heat transfer, but its efficacy in a frosting environment is essentially unknown. In this study, an array of delta-wing vortex generators is applied to a plain-fin-and-tube heat exchanger with a fin spacing of 8.5 mm. Heat transfer and pressure drop performance are measured to determine the effectiveness of the vortex generator under frosting conditions. For air-side Reynolds numbers between 500 and 1300, the air-side thermal resistance is reduced by 35–42% when vortex generation is used. Correspondingly, the heat transfer coefficient is observed to range from 33 to 53 W m−2 K−1 for the enhanced heat exchanger and from 18 to 26 W m−2 K−1 for the baseline heat exchanger.  相似文献   

16.
Microchannel (or mini-channel) heat exchangers are drawing more attention because of the potential cost reduction and the lower refrigerant charge. Serpentine microchannel heat exchangers are even more compact because of the minimized headers. Using the serpentine microchannel condenser, some thermodynamically good but flammable refrigerants like R-290 (Propane) can be extended to more applications. To well size the serpentine microchannel condensers, a distributed-parameter model has been developed in this paper. Airside maldistribution is taken into account. Model validation shows good agreement with the experimental data. The predictions on the heating capacity and the pressure drop fall into ±10% error band. Further analysis shows the impact of the pass number and the airside maldistribution on the condenser performance.  相似文献   

17.
This paper presents a one-dimensional mathematical model for heat and mass transfer of water droplets in a spray chamber. The model includes drop size distribution and velocity of the droplets generated by a nozzle of inlet diameter 3.2 mm. By using the conservation of mass and energy, the changes in water temperature, air temperature and humidity along the spray cone in the spray chamber can be calculated. This model is tested with two different water mass flows. The results look reasonable from practical point of view and they also show that higher water mass flow results in a higher air temperature drop and higher humidity.  相似文献   

18.
The objectives of this study are to measure the vapor absorption rate and heat transfer rate for falling film flow of binary nanofluids, and to compare the enhancement of heat transfer and mass transfer under the same conditions of nanofluids. The key parameters are the base fluid concentration of LiBr, the concentration of nanoparticles in weight %, and nanoparticle constituents. The binary nanofluids are H2O/LiBr solution with nanoparticles of Fe and Carbon nanotubes (CNT) with the concentrations of 0.0, 0.01 and 0.1 wt %. The vapor absorption rate increases with increasing the solution mass flow rate and the concentration of Fe and CNT nanoparticles. It is found that the mass transfer enhancement is much more significant than the heat transfer enhancement in the binary nanofluids with Fe and CNT. It is also found that the mass transfer enhancement from the CNT nanoparticles becomes higher than that from the Fe nanoparticles. Therefore, the CNT is a better candidate than Fe nanoparticles for absorption performance enhancement in H2O/LiBr absorption system.  相似文献   

19.
This paper studies refrigeration cycles in which plate heat exchangers are used as either evaporators or condensers. The performance of the cycle is studied by means of a method introduced in previous papers which consists of assessing the goodness of a calculation method by looking at representative variables such as the evaporation or the condensation temperature depending on the case evaluated. This procedure is also used to compare several heat transfer coefficients in the refrigerant side. As in previous works the models of all the cycle components are considered together with the heat exchanger models in such a way that the system of equations they provide is solved by means of a Newton–Raphson algorithm. Calculated and measured values of the evaporation and the condensation temperatures are also compared. The experimental results correspond to the same air-to-water heat pump studied in other papers and they have been obtained by using refrigerants R-22 and R-290.  相似文献   

20.
The heat transfer characteristics of various insulated long polygonal ducts are analyzed using one-dimensional Plane Wedge Thermal Resistance (PWTR) and Plate Thermal Resistance (PTR) models. It is found that errors generated by the PWTR model are all positive and those generated by the PTR model are all negative. Thus, the Combined Plate Wedge Thermal Resistance (CPWTR) model generated by implementing PWTR and PTR models and equating the proportion factors can neutralize the positive and negative errors and generate reasonably accurate results when compared with the two-dimensional numerical analysis. Most errors generated by the one-dimensional CPWTR model are within ±1% for practical sizes and insulated thickness for air-conditioning and refrigeration applications. Meanwhile, the PTR model can be used to estimate accurately the maximum or minimum surface temperatures, respectively, with hot or cold fluids inside an insulated triangular, rectangular or pentagonal duct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号