首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
This investigation pertains to the influence of some test parameters like applied load, sliding speed and test environment on the sliding wear behaviour of a grey cast iron. Properties studied were wear rate, frictional heating and friction coefficient in dry and oil lubricated conditions. The wear response of the samples has been discussed in terms of specific characteristics like load bearing, lubricating and cracking tendency of different microconstituents of the cast iron. Examination of wear surfaces, subsurface regions and debris particles has also been carried out to understand the operating wear mechanisms and further substantiate the observed response of the samples.  相似文献   

2.
This study pertains to the observations made during the sliding wear response of a zinc-based alloy in different test conditions. The effects of sliding speed and load on the wear behaviour of the alloy have been studied. The properties evaluated were wear rate, frictional heating and coefficient of friction. The wear performance of the zinc-based alloy has been compared with that of a conventional cast iron in identical test conditions. The wear rate of the samples increased with applied load and sliding speed while the seizure resistance (load) deteriorated with speed. The zinc-based alloy exhibited less wear rate and reduced frictional heating than that of the cast iron while friction coefficient followed a reverse trend. Observed wear response of the samples has been discussed in terms of specific features like lubricating, load carrying, microcracking and thermal stability of various microconstituents of the samples, and substantiated further through the features of wear surfaces, subsurface regions and debris.  相似文献   

3.
The wear of grey cast iron in dry sliding conditions has been studied with the aims of (1) finding the influence of working conditions on the wear rate, and (2) determining the region of speed and load where low wear is accomplished. Grey cast iron with flake and nodular graphite was submitted to investigation using a pin-on-disc machine. The results indicate that the flake graphite cast iron is more suitable for applications at speeds greater than 4 m s−1 and lower loads, while nodular cast iron has greater wear resistance at lower speeds in the range of loads investigated - from 50 N cm−2 to 200 N cm−2  相似文献   

4.
The effect of a continuous phosphide network in matrices of pearlite, ferrite, martensite, and tempered martensite has been investigated on the dry wear of a grey iron, sliding at a speed of 1.5 m s−1 with stresses of 0.5 and 2.0 MPa against cast iron. A running-in period was observed with a 0.2% P iron, whereas no running-in was observed with the 1.0% P irons. The presence of a continuous phosphide network reduced the wear rate of the pearlite iron by a factor of 0.25. In the weaker matrices (pearlite, ferrite, and tempered martensite) the phosphide network stiffened the matrix, fractured, and formed a particulate composite of phosphide in the deformed surface which resisted deformation. The wear rates and wear mechanisms of the irons are presented and discussed.  相似文献   

5.
Friction and wear behavior of MoS2, boric acid, graphite and TiO2 has been compared under extreme boundary lubrication condition. Boundary lubrication was simulated for the study. Results show that MoS2 and graphite were 30-50% more effective than other two lubricants. Friction coefficient shows a decreasing trend with increase in sliding speed due to increasing temperature and higher shear force. High friction coefficient values were recorded for all the lubricants (0.2-0.5). This is due to predominating solid interactions during boundary lubrication condition. Boric acid and TiO2 were not much effective in lubrication.  相似文献   

6.
The effect of heat treatment on microstructure, hardness, tensile properties, fracture mode and wear behaviour during lubricated and dry sliding of the zinc-based alloy with 25 wt.%Al was studied. Microstructural investigation and chemical analysis of as-cast and heat-treated specimens, the fracture and worn surfaces, as well as wear debris were performed by scanning electron microscopy and energy dispersive spectroscopy. Wear tests were carried out using a disc-on block-type wear machine. By a relatively simple heat treating consisting of a short-term annealing in the single-phase region followed by water-quenching, the elongation has been markedly improved, while the strength was maintained high. The results indicate that the wear rate strongly depends on the microstructure, applied load and sliding conditions. The wear rate increases with load, and under dry sliding conditions the wear rate is approximately two orders of a magnitude higher than under lubricated conditions. During dry sliding the best wear behaviour was displayed by the water-quenched specimens, whereas slowly cooled specimens showed the higher wear rate. Lubrication strongly affects the wear behaviour. Contrary to dry sliding, slowly cooled specimens exhibit the best wear properties under lubricated conditions. The wear mechanisms were proposed for dry and lubricated sliding. An erratum to this article can be found at  相似文献   

7.
Ni/carbon nanotube (Ni/CNTs) composite coatings were deposited on carbon steel plate by electroless deposition. The friction and wear properties were examined under dry sliding conditions using the ball-on-disk configuration. For reference, carbon steel plate was coated with Ni, Ni/SiC and Ni/graphite. The results show that the Ni/CNT coating has a microhardness value of 865 Hv, greater than for SiC reinforced composite deposits. The Ni/CNTs composite coating possesses not only a higher wear resistance but also a lower friction coefficient, resulting from their improved mechanical characteristics and the unique topological structure of the hollow nanotubes.  相似文献   

8.
Modi  O.P.  Prasad  B.K.  Jha  A.K.  Deshmukh  V.P.  Shah  A.K. 《Tribology Letters》2004,17(2):129-138
This investigation deals with the influence of hardfacing En31 steel separately with Fe–TiC composite and commercial cobalt base (stellite 6) material on their sliding wear behaviour at 2.94 m/s speed and varying applied pressures. Wear response of the samples was substantiated through the scanning electron microscopic studies of the wear surfaces, subsurface regions and debris particles. The hardfaced samples revealed superior wear performance than that of the substrate. Further, the steel hardfaced with cobalt-based stellite offered higher wear resistance over the one overlayed with Fe–TiC composite. The applied pressure controlled the wear behaviour (rate) in a complex manner and its influence was dependent on material composition/microconstituents and test conditions. The friction coefficient got reduced with pressure except in the case of the Fe–TiC composite overlay beyond 2 MPa. The hardfaced samples were noted to be better suited for more severe conditions. Microcracking was quite frequently observed on wear surfaces of the hardfaced material especially under mild wear conditions. Sticking of fine debris particles on to the specimen surface was also observed.  相似文献   

9.
A novel aluminium silicate hydroxide additive has shown excellent anti‐wear effect in practical applications and has been mainly studied on steels in laboratory conditions. In this paper, the pin‐on‐disk sliding wear tests were carried out to investigate the wear and worn surfaces of grey cast iron with additives in different concentration. It was found that the silicate additive showed an obvious anti‐wear effect and a reliable duration, reduced the number of pits and cracks on the worn surfaces and improved the nanohardness of the worn surfaces of grey cast iron disks by 72%. Furthermore, Raman spectroscopy displayed that the carbon structure of the worn surface of grey cast iron disks with the additive had an obvious transformation from nanocrystalline graphite to amorphous carbon. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Friction and wear characteristics of a type of polyetheretherketone (PEEK)- based composite were evaluated under two different loading pressures and sliding speeds (P = 1.0 MPa, V = 1.0 m/s and P=2.0 Mpa, V=3.3 m/s). The material was in contact with steel surfaces of two different roughnesses (Ra=0.15 μm and Ra=0.33 μm). Interface temperature, coefficient offriction, depth wear rate, and specific wear rate of the polymer composite changed considerably with the PV value and the counterface roughness. The interface temperature increased with increasing PV value, whereas the friction coefficient decreased. The depth wear rate at the higher PV value was much higher than that at lower PV. In addition, the rougher counterface resulted in a higher friction coefficient, depth wear rate, and specific wear rate, when the PV value was fixed. The effect of counterface roughness on the specific wear rate at the higher PV value was smaller than that at the lower PV. Further variations in friction and wear with testing conditions are discussed along with the corresponding microscopic observations of the worn polymer surfaces and the polymer transferred counterfaces.  相似文献   

11.
Friction and wear of alumina sliding against two chromium steels and against itself under dry and wet conditions are reported. Tests were performed using a pin-on-disc device. Loads and speeds, respectively, ranged from 5 to 300 N and 3 to 10.7 m/s. The evolution of the friction coefficient and wear rates point to the existence of a load threshold correlated with the sudden degradation of the ceramic under both wet and dry conditions. Below the threshold, the ceramic remains undamaged while steels exhibit a moderate wear rate. Worn surfaces show thickening metallic transfer on the ceramic and abrasion grooves on steels. Above the threshold, the ceramic damage is induced by grain boundaries failure which leads to a coarse roughness and the release of abrasive particles. The circulation of the latter increases the steel wear and reduces the metallic transfer thickness on the ceramic. Water in the contact zone significantly lowers the threshold value and the friction coefficient value. The mechanical, thermal and chemical effects of load, speed and water are discussed with regard to damage undergone by the sliding bodies. A particular emphasis is focused on the calculation of average and maximum temperatures occuring in the contact area in relation to ceramic grain boundary damage.  相似文献   

12.
Recently, the behavior of inorganic fullerene-like (IF) WS2 nanoparticles in the interface of steel-on-steel pair has been analyzed. It was shown that originally when the gap between the contact surfaces is smaller than the size of the IF nanoparticles, there is no effect of the nanoparticles on the friction force. During the test stiff IF nanoparticles can plough the surface of hard steel samples and penetrate into the interface under friction. Molecular sheets of WS2 from the delaminated IF nanoparticles, which reside in the valleys of the rough surfaces cover the contact spots and thus decrease the number of adhered spots at the transition to seizure. The goal of the present work was to study the behavior of IF nanoparticles in the interface of ceramic surfaces. The friction tests were performed using a ball-on-flat device. A silicon nitride ball was slid against an alumina flat with maximum contact pressure close to 2 GPa. SEM, TEM and AFM techniques have been used in order to assess the behavior of IF nanoparticles in the interface. The behavior of IF nanoparticles in the much harder ceramic interfaces was found to be appreciably different from the steel pair. The pristine IF nanoparticles are damaged in the inlet of the contact during the first few cycles and thin shells of broken nanoparticles gradually cover the middle range of the contact surface. Different modes of deformation and destruction of the IF nanoparticles are exhibited when going from the middle to edge area of the contact. While aggregates of the pristine nanoparticles are formed at the edge of the contact, thin shells of broken IF nanoparticles are observed in the middle area where contact pressure is maximum. Mechanical stability and damage of IF nanoparticles in the ceramic interface are discussed.  相似文献   

13.
Al2O3 and Cr2O3 coatings were deposited by atmospheric plasma spraying and their tribological properties dry sliding against copper alloy were evaluated using a block-on-ring configuration at room temperature. It was found that the wear resistance of Al2O3 coating was superior to that of the Cr2O3 coating under the conditions used in the present study. This mainly attributed to its better thermal conductivity of Al2O3 coating, which was considered to effectively facilitate the dissipation of tribological heat and alleviate the reduction of hardness due to the accumulated tribological heat. As for the Al2O3 coating, the wear mechanism was plastic deformation along with some micro-abrasion and fatigue-induced brittle fracture, while the failure of Cr2O3 coating was predominantly the crack propagation-induced detachment of transferred films and splats spallation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号