首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
This paper reports the findings of a study of the structural, mechanical, and tribological properties of amorphous hydrogenated carbon (a-C:H) coatings for industrial applications. These thin films have proven quite advantageous in many tribological applications, but for others, thicker films are required. In this study, in order to overcome the high residual stress and low adherence of a-C:H films on metal substrates, a thin amorphous silicon interlayer was deposited as an interface. Amorphous silicon and a-C:H films were grown by using a radio frequency plasma enhanced chemical vapor deposition system at 13.56 MHz in silane and methane atmospheres, respectively. The X-ray photoelectron spectroscopy technique was employed to analyze the chemical bonding within the interfaces. The chemical composition and atomic density of the a-C:H films were determined by ion beam analysis. The film microstructure was studied by means of Raman scattering spectroscopy. The total stress was determined through the measurement of the substrate curvature, using a profilometer, while micro-indentation experiments helped determine the films' hardness. The friction coefficient and critical load were evaluated by using a tribometer. The results showed that the use of the amorphous silicon interlayer improved the a-C:H film deposition onto metal substrates, producing good adhesion, low compressive stress, and a high degree of hardness. SiC was observed in the interface between the amorphous silicon and a-C:H films. The composition, the microstructure, the mechanical and tribological properties of the films were strongly dependent on the self-bias voltages. The tests confirmed the importance of the intensity of ion bombardment during film growth on the mechanical and tribological properties of the films.  相似文献   

2.
High-frequency plasma-enhanced chemical vapor deposition (HF-PECVD) is a widely applicable method of deposition over a large area at a high rate for fabricating silicon thin-film solar cells. This investigation presents the properties of hydrogenated amorphous silicon (a-Si:H) films and the preparation of highly-efficient p-i-n solar cells using an RF (27.1 MHz) excitation frequency. The influence of the power (10-40 W) and pressure (20-50 Pa) used during the deposition of absorber layers in p-i-n solar cells on the properties and mechanism of growth of the a-Si:H thin films and the solar cells is studied. The a-Si:H thin films prepared under various deposition conditions have widely varying deposition rates, optical-electronic properties and microstructures. When the deposition parameters were optimized, amorphous silicon-based thin-film silicon solar cells with efficiency of 7.6% were fabricated by HF-PECVD. These results are very encouraging for the future fabrication of highly-efficient thin-film solar cells by HF-PECVD.  相似文献   

3.
In photovoltaic devices, rather thin intrinsic layers of good quality materials are required and high deposition rates are a key point for a cost-effective mass production. In a previous study we have shown that good quality amorphous silicon (a-Si:H) films can be deposited by matrix distributed electron cyclotron resonance (MDECR) plasma CVD at very high deposition rates (∼ 2.5 nm/s). However, only thick films (> 1 μm) exhibited good transport properties. A very poor thermal coupling between the substrate holder and the substrate is the main reason for such a behaviour. We present here experimental data which support this conclusion as well as the improved transport and defect-related properties of new very thin a-Si:H samples (thickness around 0.3 μm) deposited at a higher temperature than the previous ones.  相似文献   

4.
M. Zhu  X. Guo  G. Chen  H. Han  M. He  K. Sun 《Thin solid films》2000,360(1-2):205-212
Undoped hydrogenated microcrystalline silicon (μc-Si:H) thin films were prepared at low temperature by hot wire chemical vapor deposition (HWCVD). Microstructures of the μc-Si:H films with different H2/SiH4 ratios and deposition pressures have been characterized by infrared spectroscopy X-ray diffraction (XRD), Raman scattering, Fourier transform (FTIR), cross-sectional transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). The crystallization of silicon thin film was enhanced by hydrogen dilution and deposition pressure. The TEM result shows the columnar growth of μc-Si:H thin films. An initial microcrystalline Si layer on the glass substrate, instead of the amorphous layer commonly observed in plasma enhanced chemical vapor deposition (PECVD), was observed from TEM and backside incident Raman spectra. The SAXS data indicate an enhancement of the mass density of μc-Si:H films by hydrogen dilution. Finally, combining the FTIR data with the SAXS experiment suggests that the Si---H bonds in μc-Si:H and in polycrystalline Si thin films are located at the grain boundaries.  相似文献   

5.
The wide absorption band of hydrogenated amorphous silicon (a-Si:H) is being realized as a key component of solar cells on glass. In this study, a-Si:H films were prepared by reactive pulsed laser deposition onto silicon and glass substrates. Ellipsometry showed that the optical properties of the films are effectively independent on the choice of substrate. According to the optical properties, the character of the films changes from amorphous silicon to dielectric as the hydrogen background pressure increases from 0 to 25 Pa. This observation was attributed to oxygen incorporation indicated by Rutherford Backscattering Spectrometry. Furthermore, a refractive index gradient in depth was revealed, which was attributed to the oxygen concentration gradient.  相似文献   

6.
We investigated amorphous silicon carbide (a-SiC:H) thin films deposited by plasma-enhanced chemical vapor deposition (PECVD) as protective coatings for harsh environment applications. The influence of the deposition parameters on the film properties was studied. Stoichiometric films with a low tensile stress after annealing (< 50 MPa) were obtained with optimized parameters. The stability of a protective coating consisting of a PECVD amorphous silicon oxide layer (a-SiOx) and of an a-SiC:H layer was investigated through various aging experiments including annealing at high temperatures, autoclave testing and temperature cycling in air/water vapor environment. A platinum-based high-temperature metallization scheme deposited on oxidized Si substrates was used as a test vehicle. The a-SiOx/a-SiC:H stack showed the best performance when compared to standard passivation materials as amorphous silicon oxide or silicon nitride coatings.  相似文献   

7.
采用傅立叶红外吸收谱和紫外-可见透射谱研究了螺旋波等离子体增强化学气相沉积法制备的氢化非晶氮化硅薄膜的原子间键合结构和光学特性。结果表明,在不同硅、氮活性气体配比R下,薄膜表现出不同的Si/N比和H原子键合方式,富氮样品中H原子主要和N原子结合,而富硅样品中主要和Si原子结合。随着R的增加,薄膜的光学带隙Eg和E04逐渐减小,此结果关联于薄膜结构无序性程度的增加,而薄膜的(E04-Eg)和Tauc斜率B值之间存在着相互制约关系。  相似文献   

8.
F. Villar 《Thin solid films》2008,516(5):584-587
We study the structural and electrical properties of intrinsic layer growth close to the transition between amorphous silicon (a-Si:H) and nanocrystalline silicon (nc-Si:H), deposited on glass and PEN without intentional heating. These samples showed different behaviour in Raman shift and XRD spectra when compared with that of samples deposited at 200 °C. Electrical properties of these films also reflect the transition between a-Si:H and nc-Si:H, and put in evidence some differences between the microstructure of the films grown on PEN and on glass.P- and n-doped layers were deposited onto glass substrate without intentional heating and at 100 °C with thicknesses ranging from 1000 nm to 35 nm. Conductivity measurements indicate the capability of doping this material, but, for very thin layers, substrate heating was found to be essential.  相似文献   

9.
We applied ex situ spectroscopic ellipsometry (SE) on silicon thin films across the a-Si:H/μc-Si:H transition deposited using different hydrogen dilutions at a high pressure by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD). The optical models were based on effective medium approximation (EMA) and effective to estimate the thickness of the amorphous incubation layer and the volume fractions of amorphous, microcrystalline phase and void in μc-Si:H thin films. We obtained an acceptable data fit and the SE results were consistent with that from Raman spectroscopy and atomic force microscopy (AFM). We found a thick incubation layer in μc-Si:H thin films deposited at a high rate of ~ 5 Å/s and this microstructure strongly affected their conductivity.  相似文献   

10.
以硅烷 (SiH4 )和硼烷 (B2 H6)为气相反应先驱体 ,采用等离子体增强化学气相沉积法 (PECVD)制备出轻掺硼非晶氢硅薄膜。X射线衍射、原子力显微镜和光、暗电导测试表明 ,一定程度的硼掺杂提高了非晶氢硅薄膜的电导率 ,降低了非晶氢硅薄膜的光、暗电导比 ,并促进了非晶氢硅薄膜中硅微晶粒的生长。红外吸收谱研究预示了大量的硼原子与硅、氢原子之间能形成某些形式的复合体 ,仅有少量硼元素对P型掺杂有贡献。  相似文献   

11.
High-quality hydrogenated amorphous silicon films (a-Si:H) were deposited on quartz glass substrates by radio-frequency plasma-enhanced chemical vapor deposition method. The films were then annealed at 800 °C for 3 min by rapid thermal processing (RTP). As confirmed by X-ray diffractometry and Raman spectrometry, hydrogenated microcrystalline silicon films were obtained after the annealing procedure. The mechanism of the rapid solid-phase recrystallization of a-Si:H film by RTP was theoretically mainly attributed to the interaction between short-wavelength photons and ground-state precursor radicals (silicon, SiH2 and SiH3).  相似文献   

12.
We report the deposition of Si-N films by multipulse excimer laser ( = 308 nm, FWHM = 30 ns) ablation of Si wafers placed in a slow flow of NH3 in the pressure range (1 bar-1 mbar). The films are deposited on to a Si collector placed parallel to the Si target. We succeeded in depositing pure amorphous Si3N4 films at a pressure of 1 mbar of NH3. The deposition rate reached a maximum value of 0.2–0.3 nm per pulse. At lower pressures, the deposited films consist of a fine mixture of three amorphous phases (amorphous stoichiometric silicon nitride, amorphous non-stoichiometric silicon nitride and amorphous silicon). The amorphous silicon is prevalent in films deposited at a pressure of several to several tens of bars. Droplets of polycrystalline -Si are sometimes visible on the film surface. The experimental evidence, is analysed with a view to elucidating the participation in the chemical synthesis of the three main stages of the process: the substance expulsion from the target by laser ablation, the transition through the gas of the expulsed substance and it's final impact on the collector. We conclude that silicon nitride is mostly synthesized during the impact on the collector of the flow of the ablated substance.  相似文献   

13.
Li SB  Wu ZM  Jiang YD  Li W  Liao NM  Yu JS 《Nanotechnology》2008,19(8):085706
The influence of structure variation on the 1/f noise of nanometric boron doped hydrogenated polymorphous silicon (pm-Si:H) films was investigated. The films were grown by the conventional radio frequency plasma enhanced chemical vapor deposition (PECVD) method. Raman spectroscopy was used to reveal the crystalline volume fraction (X(c)) and crystal size of the pm-Si:H. The measurement of optical and structure properties was carried out with spectroscopic ellipsometry (SE) in the Tauc-Lorentz model. A Fourier transform infrared (FTIR) spectrometer was used to characterize the presence of nanostructure-sized silicon clusters in pm-Si:H film deposited on KBr substrate. The electrical properties of the films were measured using evaporated coplanar nickel as the electrode. A semiconductor system was designed to obtain the 1/f noise of pm-Si:H film as well as that of amorphous and microcrystalline silicon films. The results demonstrate that the 1/f noise of pm-Si:H is nearly as low as that of microcrystalline silicon and much lower than that of amorphous silicon. The disorder to order transition mechanism of crystallization was used to analyze the decrease of noise compared with amorphous silicon.  相似文献   

14.
In a novel experiment hydrogenated amorphous silicon films were deposited by modulating the very high frequency (VHF) (100 MHz) discharges, at low frequency (2 Hz) with a nonzero low power level, using pure as well as 25% hydrogen and 25% helium diluted silane as the source gases. During these studies deposition rate is found to depend on the dwell time as in the case of RF pulsed plasma CVD reported earlier by the authors. The films were characterised for optical bandgap, dark and photoconductivity, hydrogen content, microstructure factor, Urbach energy and defect density. The results indicate that, unlike the RF pulsed plasma case, there is an order of magnitude improvement in the photoconductivity of the material due to pulsing the VHF discharges. Urbach energy and defect density studies also indicate an improvement in the film quality. The improvements are more pronounced in diluted silane deposited films. Controlled ion bombardment (of high flux and lower energy) and the resulting ion bombardment induced preparation of the growth surface in the VHF discharges are believed to be the main factors contributing to the observed results. Thus, a more favourable sheath characteristics as obtained during pulsed VHF discharge conditions over RF (13.56 MHz). Silane discharges holds the key to obtain high growth rate deposition of a-Si:H films of acceptable opto-electronic quality  相似文献   

15.
Microcrystalline silicon (μc-Si:H) and amorphous silicon (a-Si:H) films were deposited using a hot-wire CVD (HWCVD) system that employs a coiled filament. Process gasses, H2 and Si2H6, could be directed into the deposition chamber via different gas inlets, either through a coiled filament for efficient dissociation or into the chamber away from the filament, but near the substrates. We found that at low deposition pressure (e.g. 20 mTorr) the structure of the films depends on the way gases are introduced into the hot-wire chamber. However, at higher pressure (e.g. 50 mTorr), Raman measurement shows similar results for films deposited with different gas inlets.  相似文献   

16.
A novel deposition process for depositing nano-crystalline silicon (nc-Si) thin films at low temperature was developed using reactive particle beam assisted chemical vapor deposition (RPB-CVD) for applications to the thin film transistor (TFT) backplane of flexible active matrix-OLEDs with plastic substrates. During the formation of nc-Si thin films by the RPB-CVD process with a silicon reflector electrode at low temperatures or room temperature, energetic particles could induce the formation of a crystalline phase in polymorphous Si thin films without additional substrate heating. The effects of the incident RPB energy controlled by the reflector bias were confirmed by Raman spectroscopy. The dark conductivity of polymorphous Si thin films increased with increasing reflector bias, whereas the ratio of photo and dark conductivity decreased monotonically. The optical band gap of the Si thin films also could be changed from amorphous to nano-crystalline by controlling the reflector bias. The first results of a primitive nc-Si TFT by RPB-CVD at room temperature demonstrate the technical potential of RPB-based processes as flexible TFT backplanes.  相似文献   

17.
Hydrogenated silicon film is fabricated by plasma enhanced chemical vapor deposition method, and the enhancement of thermal conductivity of hydrogenated silicon film by microcrystalline structure growth is investigated. The thermal conductivity of films is measured based on Fourier thermal transmitting law by using platinum electrode. Raman spectroscopy characterization reveals the crystalline volume fraction (X c) of microcrystalline silicon (μc-Si:H) and demonstrates it is embedded with nanocrystals. Spectroscopic ellipsometry with Forouhi–Bloomer model is used to obtain the thickness of films. The measurement results show that the thermal conductivity of μc-Si:H is much higher than amorphous silicon (a-Si:H).  相似文献   

18.
Hydrogenated amorphous silicon oxide (a-SiO:H) films prepared by rf plasma enhanced chemical vapour deposition (PECVD) method have recently proved their potential as a photovoltaic material for the fabrication of high efficiency multijunction amorphous silicon solar cells. If deposited under proper conditions, it may be a better wide band gap material than the normally used a-SiC : H. In this paper we report the improvements achieved over the previously reported results. The films have been characterized in detail in terms of their optoelectronic properties, structural characteristics, defect density and light induced degradation.  相似文献   

19.
《Vacuum》1998,51(4):751-755
Very High Frequency (VHF) plasma enhanced chemical vapour deposition (PECVD) has been applied to hydrogenated amorphous silicon (a-Si:H) and hydrogenated amorphous silicon nitride (a-SiNx:H) films for thin film transistors (TFTs) fabrication. The effect of the excitation frequency on the deposition rate and the film quality of both films has been investigated. The films were prepared by VHF (30 MHz∼50 MHz) and HF (13.56 MHz) plasma enhanced CVD.High deposition rates were achieved in the low pressure region for both a-Si:H and a-SiNx:H depositions by the use of VHF plasma. The maximum deposition rates were 180 nm/min for a-Si:H at 50 MHz and 340 nm/min for a-SiNx:H at 40 MHz. For a-SiNx:H films deposited in VHF plasma, the optical bandgap, the hydrogen content and the [Si–H]/[N–H] ratio remain almost constant regardless of an increase in deposition rate. The increase of film stress could be limited to a lower value even at a high deposition rate. The TFTs fabricated with VHF PECVD a-Si:H and a-SiNx:H films showed applicable field effect mobility. It is concluded that VHF plasma is useful for high rate deposition of a-Si:H and a-SiNx:H films for TFT LCD application.  相似文献   

20.
In this study hydrogenated amorphous carbon films (a-C:H) and silicon doped hydrogenated amorphous carbon films (a-C:H:Si) with different hydrogen and silicon contents were deposited onto sensors of a quartz crystal microbalance with dissipation detection (QCM-D). The resulting films were investigated with regard to their structural and elemental compositions using Raman spectroscopy, elastic recoil detection analysis and Rutherford backscattering spectroscopy. Furthermore the surface free energy (SFE) of the films was determined using contact angle measurements. The polar part of SFE of the a-C:H:Si films was found to be adjustable by the silicon content in these films and increased by increasing amounts of silicon. Carbon films with a broad range of chemical composition showed similar structure and properties when deposited on QCM-D sensors as compared with the deposition on silicon wafers. Subsequently, the amorphous carbon coated QCM-D sensors were used to study the adsorption of human serum albumin. These QCM-D results were related to the surface properties of the films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号