共查询到20条相似文献,搜索用时 15 毫秒
1.
G.I. Cubillos J.J. Olaya M. Bethencourt G. Antorrena K. El Amrani 《Materials Chemistry and Physics》2013
A study of structure, morphology, and corrosion resistance was performed on zirconium oxynitride thin films deposited on 304 and 316 stainless steels by the DC sputtering magnetron unbalance technique. Structural analysis was carried out using X-ray diffraction (XRD), while morphological analysis was performed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). These studies were performed as a function of deposition time via DC sputtering at room temperature (287 K) with an Ar/air flow ratio of 3.0 and a total deposition time of 30 min. The oxynitride films were grown with cubic crystalline structures Zr2ON2 and preferentially oriented along the (222) plane. Chemical analysis determined that in the last 5.0 nm, the Zr coatings present the following spectral lines: Zr3d3/2 (184.6 eV) and 3d5/2 (181.7 eV), O1s (531.3 eV), and N1s (398.5 eV). 相似文献
2.
Growing requirements for the optical and environmental stability, as well as the radiation resistance against high-power laser radiation, especially for optical interference coatings used in the ultraviolet spectral range, have to be met by new, optimised, thin-film deposition technologies. For applications in the UV spectral range, the number of useful oxide thin film materials is very limited due to the higher absorption at wavelengths near to the electronic bandgap of the materials. Applying ion-assisted processes offers the ability to grow dense and stable films, but in each case careful optimisation of the deposition process (evaporation rate, substrate temperature, bombarding gas, ion energy and ion current density) has to achieve a balance between densification of the layers and the absorption. High-quality coatings and multilayer interference systems with SiO2 as the low-index material can be deposited by various physical vapour deposition technologies, including reactive e-beam evaporation, ion-assisted deposition and plasma ion-assisted deposition. In order to improve the degradation stability of dielectric mirrors for use in UV free-electron laser optical cavities, a comparative study of the properties of SiO2, Al2O3 and HfO2 single layers was performed, and was addressed to grow very dense films with minimum absorption in the spectral range from 200 to 300 nm. The films were deposited by low-loss reactive electron-beam evaporation, by ion-assisted deposition using a ‘Mark II’ ion source, and by plasma ion-assisted deposition using the advanced plasma source. Optical and structural properties of the samples were studied by spectral photometry, infrared spectroscopy, X-ray diffraction and reflectometry, as well as by investigation of the surface morphology. The interaction of UV radiation with photon energy values close to the bandgap was studied. For HfO2 single layers, laser-induced damage thresholds at 248 nm were determined in the 1-on-1 and 1000-on-1 test modes as a function of the deposition technology and film thickness. 相似文献
3.
Influence of ion bombardment on the properties and microstructure of unbalanced magnetron deposited niobium coatings 总被引:3,自引:0,他引:3
The effect of the ion bombardment to unbalanced magnetron deposited, approximately 1.5 and 4.5 μm thick, Nb coatings have been investigated as the bias voltage was varied from UB=−75 to −150 V. Increasing bias voltage increased the hardness of the coating from 4.5 to 8.0 GPa. This was associated with residual stress and Ar incorporation into the Nb lattice. Strong {110} texture developed in the samples deposited at low bias voltages, while beyond UB=−100 V a {111} texture became dominant. However, strong {111} texture was observed only with the thicker 3Nb coatings. Secondary electron microscopy investigation of the coating topography showed fewer defects in the thicker coatings. All coatings exhibited good corrosion resistance, with the thicker coatings clearly outperforming the thinner ones. Excessive bias voltages (UB=−150 V) was found to lead to poor adhesion and loss of corrosion resistance. 相似文献
4.
Hybrid deposition method was used to prepare CrNx/amorphous-WC (CrNx/a-WC) films. The effect of the arc ion plating and direct current magnetron sputtering on the changes in microstructure and properties such as hardness and thermal stability were studied. The amorphous WC phase of the CrNx/a-WC films was confirmed by X-ray photoelectron spectroscopy and high resolution transmission electron microscopy. A bi-phase nanocomposite kinetic model and the Koehler's theory were used to explain the growth mechanism of CrNx/a-WC films. A superhard superlattice Cr2N/a-WC film with hardness up to ~ 48 GPa was abtained. The CrN/a-WC films displayed better resistance to oxidation than pure CrN and CrN-based films. As such, CrNx/a-WC nanocomposite films are very promising for high-speed drying machines and other high-temperature applications. 相似文献
5.
This study describes the synthesis, structure and friction behavior of titanium doped tungsten disulphide (Ti-WS2) nanocomposite solid lubricant thin films grown by cosputtering at room and 300 °C in situ substrate temperatures. The films were studied by focused ion beam (FIB) prepared cross-sectional scanning and transmission electron microscopies and X-ray diffraction (XRD) to determine the thin film structure and crystallinity as a function of varying titanium atomic percent and sputtering power. XRD confirmed that the pure WS2 thin films grown at room temperature (RT) and 300 °C were crystalline with hexagonal texture. Basal planes with c-axis orientated parallel to the substrate surface [(100) and (101) texture] were predominantly observed in all thin films. Co-sputtering at RT with any amount of Ti induced a dramatic change in the microstructure, i.e., Ti prevented the formation of crystalline WS2, making it amorphous with well-dispersed nanocrystalline (1-3 nm) precipitates. For RT friction tests, longer thin film lifetimes were exhibited when the thin films were doped with low amounts of Ti (∼ 5-14 at.%) in comparison to pure WS2 but there was no change in friction coefficient (∼ 0.1). For high temperature (500 °C) friction tests, slightly higher friction coefficients (0.2) but longer lifetimes were observed for the low at.% Ti doped thin films. Mechanisms of solid lubrication were studied by FIB prepared cross-sectional specimens and Raman spectroscopy wear maps inside the wear tracks to determine the sub-surface deformation behavior and formation of tribochemical products, respectively. It was determined that WS2 oxidized to form relatively low shear strength WO3 during wear (tribo-oxidation) and heating at 500 °C (thermal oxidation) as determined by Raman spectroscopy in the wear track and transfer film (third body) on the counterface. 相似文献
6.
MgF2 is a current material for the optical applications in the UV and deep UV range. Nevertheless, modern applications still require improvement of the optical and structural quality of the deposited layers. In the present work, the composition and microstructure of MgF2 single layers grown on Si [100] substrate by physical vapour deposition (PVD) and ion beam sputtering (IBS) processes, were analyzed and compared. Experiments were carried out using X-ray photoelectron spectroscopy (XPS) in depth profile, grazing angle X-ray diffraction (XRD) and transmission electron microscopy (TEM). Both layers exhibited a good stoichiometry and a low level of contamination. The sample grown by IBS revealed a more homogeneous and regular columnar microstructure than the other one. 相似文献
7.
Nanocomposite tantalum carbide/amorphous hydrocarbon (TaC/a-C:H) thin film composition, structure, and mechanical properties depend on the direct current bias voltage (Vb) level applied to the substrate during reactive sputter deposition. A set of TaC/a-C:H films was deposited across the range Vb = 0 to − 300 V with all other deposition parameters held constant except substrate temperature, which was allowed to reach its steady state during the depositions. Effects of Vb on film composition and structure were explored, including TaC crystallite size and dispersion using X-ray diffraction and high resolution transmission electron microscopy. In addition, the dependency of stress and hardness on Vb was studied with an emphasis on relationships to a-C:H phase structure. 相似文献
8.
A new TiAlCN/VCN coating combining high hardness, low friction coefficient and chemical inertness has been developed for dry machining of “Sticky” (Al-, Ti- and Ni-based) alloys as well as advanced Metal-Matrix-Composite (MMC) materials used in aerospace and automotive industries. Excellent performance was achieved due to the synergy between V and C as main coating elements and the nanoscale multilayer structure of the coating. TiAlCN/VCN was deposited by the combined High-Power Impulse Magnetron Sputtering/Unbalanced Magnetron sputtering (HIPIMS/UBM) technology. Macroparticle free V+ ion flux generated by HIPIMS discharge was used to sputter clean the substrates prior to the coating deposition. A 0.4 μm thick TiAlN base layer followed by 3 μm thick TiAlCN/VCN nanoscale multilayer coating was deposited by unbalanced magnetron sputtering. The sputtering was carried out in a mixed CH4, N2 and Ar atmosphere. In dry milling of Al7010-T7651 alloy, TiAlCN/VCN nanoscale multilayer PVD coating outperformed state of the art Diamond Like Carbon (DLC, Cr/WC/a-CH) coating by factor of 4. In drilling Al-alloy enforced MMC materials, cemented carbide drills coated with TiAlCN/VCN produced 130 holes compared to 1-2 holes with uncoated drills. 相似文献
9.
We demonstrate the deposition of fully dense, stoichiometric TiN films on amorphous SiO2 by reactive high power impulse magnetron sputtering (HiPIMS) in the absence of both substrate heating and applied bias. Contrary to the highly underdense layers obtained by reactive dc magnetron sputtering (dcMS) under similar conditions, the film nanostructure exhibits neither intra- nor intergrain porosity, exhibiting a strong 111 preferred orientation with flat surfaces. Competitive grain growth occurs only during the early stages of deposition (< 100 nm). The strong differences in the kinetically-limited nanostructural evolution for HiPIMS vs. dcMS are explained by high real-time deposition rates with long relaxation times, high ionization probabilities for Ti, and broad ion energy distributions. 相似文献
10.
M. Braic V. Braic M. Balaceanu C.N. Zoita A. Kiss A. Vladescu A. Popescu R. Ripeanu 《Materials Chemistry and Physics》2011
Zr/ZrCN multilayers, with bilayer periods ranging from 4.4 to 70 nm, were deposited on C45 and M2 steels and Si substrates by the cathodic arc technique, in a CH4 + N2 atmosphere. The elemental and phase composition, modulation periodicity, texture, surface morphology, residual stress, hardness, adhesion, friction and wear behavior were investigated as a function of bilayer period and C/N ratio using AES, RBS, XRR, XRD and AFM techniques, surface profilometry, Vickers microhardness and scratch adhesion measurements, and tribological tests. Two types of Zr/ZrCN multilayers, with high and low C/(C + N) ratios (0.7 and 0.2, respectively) in the ZrCN sub-layer composition, have been prepared. The investigations indicated that the microchemical, microstructural, mechanical and tribological characteristics of the multilayered coatings depended on C/N ratio and bilayer period. For the optimum structure parameters (bilayer periods in the range 6–13 nm), the tribological performance of the multilayers was found to be superior to that of the ZrCN monolayers. 相似文献
11.
The influence of deposition power, thickness and oxygen gas flow rate on electrical and optical properties of indium tin oxide (ITO) films deposited on flexible, transparent substrates, such as polycarbonate (PC) and metallocene cyclo-olefin copolymers (mCOC), at room temperature was studied. The ITO films were prepared by radio frequency magnetron sputtering with the target made by sintering a mixture of 90 wt.% of indium oxide (In2O3) and 10 wt.% of tin oxide (SnO2). The results show that (1) average transmission in the visible range (400-700 nm) was about 85%-90%, and (2) ITO films deposited on glass, PC and mCOC at 100 W without supplying additional oxygen gas had optimum resistivity of 6.35 × 10−4 Ω-cm, 5.86 × 10−4 Ω-cm and 6.72 × 10−4 Ω-cm, respectively. In terms of both electrical and optical properties of indium tin oxide films, the optimum thickness was observed to be 150-300 nm. 相似文献
12.
Chromium nitride thin films were deposited on SA-304 stainless steel substrates by using direct-current reactive magnetron sputtering. The influence of process conditions such as nitrogen content in the fed gas, substrate temperature, and different sputtering gases on microstructural characteristics of the films was investigated. The films showed (200) preferred orientation at low nitrogen content (< 30%) in the fed gas. The formation of Cr2N and CrN phases was observed when 30% and 40% N2 were used, with a balance of Ar, respectively. Field emission scanning electron microscopy and atomic force microscopy were used to characterize the morphology and surface topography of the thin films, respectively. Microhardness tests showed a maximum hardness of 16.95 GPa for the 30% nitrogen content. 相似文献
13.
Wei Dai Peiling KeMyoung-Woon Moon Kwang-Ryeol LeeAiying Wang 《Thin solid films》2012,520(19):6057-6063
Diamond-like carbon (DLC) films with various titanium contents were investigated using a hybrid ion beam system comprising an anode-layer linear ion beam source and a DC magnetron sputtering unit. The film composition and microstructure were characterized carefully by X-ray photoelectron spectroscopy, transmission electron microscopy and Raman spectroscopy, revealing that the doped Ti atoms had high solubility in the DLC films. The maximum solubility was found to lie between about 7 and 13 at.%. When the Ti content was lower than this solubility, the doped Ti atoms dissolved in the DLC matrix and the films exhibited the typical features of the amorphous DLC structure and displayed low compressive stresses, friction coefficients and wear rates. However, as the doped content exceeded the solubility, Ti atoms bonded with C atoms, resulting in the formation of carbide nano-particles embedded in the DLC matrix. Although the emergence of the carbide nano-particles promoted graphitizing due to a catalysis effect, the film hardness was enhanced to a great extent. On the other hand, the hard carbides particles caused abrasive wear behavior, inducing a high friction coefficient and wear rate. 相似文献
14.
We have investigated the electrical, optical, structural, and annealing properties of indium zinc tin oxide (IZTO) films prepared by an unbalanced radio frequency (RF) magnetron sputtering at room temperature, in a pure Ar ambient environment. It was found that the electrical and optical properties of unbalanced RF sputter grown IZTO films at room temperature were influenced by RF power and working pressure. At optimized growth condition, we could obtain the IZTO film with the low resistivity of 3.77 × 10− 4 Ω cm, high transparency of ~ 87% and figure of merit value of 21.2 × 10− 3Ω− 1, without the post annealing process, even though it was completely an amorphous structure due to low substrate temperature. In addition, the field emission scanning electron microscope analysis results showed that all IZTO films are amorphous structures with very smooth surfaces regardless of the RF power and working pressure. However, the rapid thermal annealing process above the temperature of 400 °C lead to an abrupt increase in resistivity and sheet resistance due to the transition of film structure from amorphous to crystalline, which was confirmed by X-ray diffraction examination. 相似文献
15.
In this study, the influence of post deposition annealing steps (PDA) on the electrical resistivity of evaporated titanium/platinum thin films on thermally oxidised silicon is investigated. Varying parameters are the impact of thermal loading with maximum temperatures up to TPDA = 700 °C and the platinum top layer thickness ranging from 24 nm to 105 nm. The titanium based adhesive film thickness is fixed to 10 nm. Up to post deposition annealing temperatures of TPDA = 450 °C, the film resistivity is linearly correlated with the reciprocal value of the platinum film thickness according to the size effect. Modifications in the intrinsic film stress strongly influence the electrical material parameter in this temperature regime. At TPDA > 600 °C, diffusion of titanium into the platinum top layer and its plastic deformation dominate the electrical behaviour, both causing an increase in film resistivity above average. 相似文献
16.
Influence of silicon content on the microstructure and hardness of CrN coatings deposited by reactive magnetron sputtering 总被引:1,自引:0,他引:1
CrN and CrSiN films were deposited on the stainless steel and silicon substrates by DC magnetron sputtering and their microstructural features were investigated by X-ray diffraction (XRD), scanning electron microscope (FE-SEM/EDS), and atomic force microscopy (AFM). The influence of Si content along with process parameters such as power on the microstructural characteristics of Cr–Si–N and CrN films were investigated and compared between each other. The power and increasing Si contents strongly influence the microstructural and hardness of the deposited films. XRD analysis of the coatings indicates a grain refinement with increase in Si content during deposition of coatings, which is tandem with AFM and SEM results. Also, the surface roughness and particle size are decreasing with addition of Si in the films. The hardness of CrN and CrSiN was measured by microhardness tester and found that introduction of Si content in the CrN system increases its hardness from 1839 Hv to 2570 Hv. 相似文献
17.
I.M. Ross W.M. Rainforth A.J. Scott B.G. Mendis C. Reinhard 《Thin solid films》2010,518(18):5121-4031
The nano-scale chemical distribution and microstructure of a nitride based wear and oxidation resistant coating prepared by unbalanced magnetron sputtering was investigated. The coating consisted of multilayers of CrAlYN/CrN with a partially oxidised CrAlY(O)N/Cr(O)N oxy-nitride surface layer. The multilayer period of both the nitride and oxy-nitride layers was 3.8 ± 0.2 nm. Nano-scale chemical analysis and imaging was performed using sub-nanometer resolution electron energy loss spectroscopic profiling in a spherical aberration corrected scanning transmission electron microscope. Experimentally determined fine edge structure in electron energy loss spectra were in good agreement with theoretically determined spectra, calculated using electron density functional theory. This analysis indicated the CrN layers to be near stoichiometric with a relative Cr/N ratio of 1.05 ± 0.1 while for the CrAlYN layers the best match between the direct chemical analysis and the simulated edges was (Cr0.5Al0.5)N. A diffuse interface, ∼ 1 nm wide was observed between the CrAlYN and CrN layers. For the outermost oxy-nitride layer, the chromium to nitrogen ratio remains approximately constant though out the layer, while the aluminium decreases as a function of increasing oxygen content. 相似文献
18.
Al-Si-N coatings were deposited on tungsten carbide (WC-Co) and silicon wafer substrates using Cr and AlSi (12 at.% Si) alloy targets using a dual cathode source with short straight-duct filter in the cathode arc evaporation system. Al-Si-N coatings were synthesized under a constant flow of nitrogen, using various substrate bias voltages at a fixed AlSi cathode power. To enhance adhesive strength, the Cr/(CrxAlySiz)N graduated layer between the top coating and the substrate was deposited as a buffer interlayer. The effects of bias voltage on the microstructure, mechanical and wear properties of the Al-Si-N films were investigated. Experimental results reveal that the Al-Si-N coatings exhibited a nanocomposite structure of nano-crystalline h-AlN, amorphous Si3N4 and a small amount of free Si and oxides. It was also observed that the deposition rate of as-deposited films gradually decreased from about 25.1 to 18.8 nm/min when the substrate bias was changed from − 30 to − 150 V. The XRD results revealed that h-AlN preferred orientation changed from (002) to (100) as the bias voltage increased. The maximum hardness of approximately 35 GPa was obtained at the bias voltage of −90 V. Moreover, the grain size was inversely proportional to the hardness of the film. Wear test results reveal that the Al-Si-N film had a lower coefficient of friction, between 0.5 and 0.7, than that 0.7 of the AlN film. 相似文献
19.
Four mechanical parameters of physical vapor-deposited (PVD) hard coatings were obtained, which were the residual strain, Young's modulus, film toughness, and interface toughness, concerning titanium aluminum nitride (TiAlN) and titanium nitride (TiN) coatings deposited on WC-Co substrates. The results were quantitatively compared with the author's previous trials for the case of chemical vapor-deposited (CVD) diamond coatings. Due to the significant difference in the mechanical properties between PVD hard coatings and CVD diamond coatings, it was necessary to develop new experimental techniques, which could properly evaluate those parameters for the case of PVD hard coatings. As a conclusion, film toughness of PVD hard coatings was surprisingly brittle. It was an order of magnitude smaller than that of CVD diamond coatings. In contrast, no significant difference was found in interface toughness between these different kinds of coatings. Concerning the residual strain, TiN had far larger level than the other two. These differences in mechanical properties were further discussed in relation to the difference in their wear behavior. 相似文献
20.
D. Martínez-Martínez C. López-Cartes A. Fernández J.C. Sánchez-López 《Thin solid films》2009,517(5):1662-2402
The performance of protective thin films is clearly influenced by their microstructure. The objective of this work is to study the influence of the structure of TiC/a-C nanocomposite coatings with a-C contents ranging from ~ 0% to 100% on their mechanical and tribological properties measured by ultramicroindentation and pin-on-disks tests at ambient air, respectively. The microstructure evolves from a polycrystalline columnar structure consisting of TiC crystals to an amorphous and dense TiC/a-C nanocomposite structure when the amount of a-C is increased. The former samples show high hardness, moderate friction and high wear rates, while the latter ones show a decrease in hardness but an improvement in tribological performance. No apparent direct correlation is found between hardness and wear rate, which is controlled by the friction coefficient. These results are compared to the literature and explained according to the different film microstructures and chemical bonding nature. The film stress has also been measured at the macro and micro levels by the curvature and Williamson-Hall methods respectively. Other mechanical properties of the coating such as resilience and toughness were evaluated by estimating the H3/E?2 and H/E? ratios and the percentage of elastic work (We). None of these parameters showed a tendency that could explain the observed tribological results, indicating that for self-lubricant nanocomposite systems this correlation is not so simple and that the assembly of different factors must be taken into account. 相似文献