首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zinc oxide (ZnO) thin films were deposited on soda lime glass substrates by pulsed laser deposition (PLD) in an oxygen-reactive atmosphere. The structural, optical, and electrical properties of the as-prepared thin films were studied in dependence of substrate temperature and oxygen pressure. High quality polycrystalline ZnO films with hexagonal wurtzite structure were deposited at substrate temperatures of 100 and 300 °C. The RMS roughness of the deposited oxide films was found to be in the range 2-9 nm and was only slightly dependent on substrate temperature and oxygen pressure. Electrical measurements indicated a decrease of film resistivity with the increase of substrate temperature and the decrease of oxygen pressure. The ZnO films exhibited high transmittance of 90% and their energy band gap and thickness were in the range 3.26-3.30 eV and 256-627 nm, respectively.  相似文献   

2.
The structural, electrical and optical properties of Nb-doped ZnO films were investigated with different Nb contents (0, 0.15, 0.31, 0.46, 0.62, and 0.94 at.%) in this article. The film with 0.46 at.% Nb content showed the lowest resistivity of 8.95 × 10− 4 Ω cm and high transmittance about 80% with high c-axis orientation. The undoped ZnO film showed a semiconducting behavior. And Nb-doped ZnO films showed a metal-semiconductor transition (MST), which was connected with localization of degenerate electrons. The films showed metallic conductivity at temperatures closer to the ambient temperature and semiconducting behavior at lower temperatures. It was noted that the NZO films with much lower Nb concentration of 0.15 at.% presented MST compared with other transparent conducting oxides films.  相似文献   

3.
In this work, pulsed laser-deposited thin films of MgO were studied for application in plasma display panels. The firing voltage (FV) of discharge cells with MgO films was measured and the film structure was investigated as a function of film deposition conditions. MgO thin films were deposited at oxygen pressure and substrate temperature between 0.02-5 Pa and 260-600 °C, respectively. The structure of thin films was investigated by using X-ray diffraction, X-ray reflection and atomic force microscopy methods. It was found that the FV is strongly correlated with the film deposition conditions and structural properties. In general, the FV values were smaller for the films with higher crystallinity and density. The crystallinity and the density of the films increased when the deposition temperature was raised and the O2 pressure was reduced. The lowest FV values (~ 120 V) were obtained at the growth temperature of 550 °C and at O2 pressures below 1 Pa.  相似文献   

4.
Nano-polycrystalline vanadium oxide thin films have been successfully produced by pulsed laser deposition on Si(100) substrates using a pure vanadium target in an oxygen atmosphere. The vanadium oxide thin film is amorphous when deposited at relatively low substrate temperature (500 degrees C) and enhancing substrate temperature (600-800 degrees C) appears to be efficient in crystallizing VOx thin films. Nano-polycrystalline V3O7 thin film has been achieved when deposited at oxygen pressure of 8 Pa and substrate temperature of 600 degrees C. Nano-polycrystalline VO2 thin films with a preferred (011) orientation have been obtained when deposited at oxygen pressure of 0.8 Pa and substrate temperatures of 600-800 degrees C. The vanadium oxide thin films deposited at high oxygen pressure (8 Pa) reveal a mix-valence of V5+ and V4+, while the VOx thin films deposited at low oxygen pressure (0.8 Pa) display a valence of V4+. The nano-polycrystalline vanadium oxide thin films prepared by pulsed laser deposition have smooth surface with high qualities of mean crystallite size ranging from 30 to 230 nm and Ra ranging from 1.5 to 22.2 nm. Relative low substrate temperature and oxygen pressure are benifit to aquire nano-polycrystalline VOx thin films with small grain size and low surface roughness.  相似文献   

5.
This paper documents the growth of single crystal Ti:sapphire thin films, typically 10 μm thick, on undoped sapphire substrates using pulsed laser deposition from a Ti:sapphire single crystal target with a doping level of 0.1 wt.% Ti2O3. These thin films are shown to have very high crystal quality using ion beam channelling and X-ray diffraction techniques. The degree of titanium incorporation into the films is investigated using inductively coupled plasma mass spectrometry and particle induced X-ray emission. These techniques show that levels of up to 0.08 wt.% Ti2O3 are present in the deposited layers.  相似文献   

6.
7.
Manganese oxide thin films with various oxidation states (MnO, Mn3O4 and Mn2O3) have been prepared by pulsed laser deposition using a Mn target at different oxygen partial pressures. The structural and morphological features of the as-deposited thin films are characterized by X-ray diffraction, Raman, field emission scanning electron microscopy (FESEM). The oxidation states of Mn in different thin films are investigated by X-ray photoelectron spectroscopy for both Mn 2p and 3s levels. It is found that the structure, surface morphology, and Mn oxidation state of the thin films can be tuned by oxygen partial pressure during the deposition. As anode for thin film lithium-ion microbatteries, the Mn3O4 thin film electrode exhibits the largest reversible capacity up to 800 mAh g−1 with good cycling stability and excellent rate capability. The promising electrochemical performance of the Mn3O4 thin film electrode indicates the potential application of Mn3O4 thin film anode in all solid-state thin film microbatteries.  相似文献   

8.
In this paper, we report on the growth of manganese oxides thin films by Pulsed Laser Deposition using an MnO target at various oxygen pressures and substrate temperatures ranging from 550 to 800 °C. Grazing Incidence X-Ray Diffraction measurements on the grown films revealed that, at low deposition temperature, the dominant phase is Mn2O3, but as the deposition temperature was raised above 700 °C, a phase transformation occurred leading to the formation of Mn3O4. In a qualitative comparison, in the temperature range of 500-850 °C, and at a pressure below 13 Pa, the phase diagram of bulk manganese oxides and our grown films show a fair correlation. The films grown near the transition temperature (T = 700 °C) were found to be very thin compared to those grown at lower or higher temperatures, but the surface roughness was found to increase with temperature, as determined by Atomic Force Microscopy.  相似文献   

9.
This work reports on the photoinduced wettability changes of high quality nanostructured ZnO films grown on Si by pulsed laser deposition (PLD) under different growth parameters. The wetting behavior of the resulting films can be reversibly switched from hydrophobic to hydrophilic, through alternation of UV illumination and dark storage. The kinetics of this wetting transition are studied by monitoring the time evolution of the corresponding contact angles. Finally, the influence of the film properties over the observed wetting response is discussed.  相似文献   

10.
11.
Nitrogen-doped titanium dioxide (TiO2) thin films were grown on (001) SiO2 substrates by reactive pulsed laser deposition. A KrF* excimer laser source (λ = 248 nm, τFWHM ≅ 10 ns, ν = 10 Hz) was used for the irradiations of pressed powder targets composed by both anatase and rutile phase TiO2. The experiments were performed in a controlled reactive atmosphere consisting of oxygen or mixtures of oxygen and nitrogen gases. The obtained thin film crystal structure was investigated by X-ray diffraction, while their chemical composition as well as chemical bonding states between the elements were studied by X-ray photoelectron spectroscopy. An interrelation was found between nitrogen concentration, crystalline structure, bonding states between the elements, and the formation of titanium oxinitride compounds. Moreover, as a result of the nitrogen incorporation in the films a continuous red-shift of the optical absorption edge accompanied by absorption in the visible spectral range between 400 and 500 nm wavelength was observed.  相似文献   

12.
13.
M. Pereira  M.J.M. Gomes 《Vacuum》2008,82(12):1375-1378
The study of highly oriented Nb-doped PZT thin films deposited by laser ablation on n-type (111) Si substrates is reported. Sintered ceramics based on the nominal composition Pb0.995(Zr0.65Ti0.35)0.99Nb0.01O3 (PZTN) with an excess of PbO were used as targets. The films were deposited using the 3rd harmonic (355 nm) of a pulsed Nd:YAG laser (7 ns pulse duration) with 7 J/cm2 fluence, at different oxygen pressures (from 10−1 to 10−4 mbar) and at a vacuum of 10−6 mbar. The substrate temperature was varied in the range of 500-600 °C. In optimized conditions, the as-deposited PZT-based films show perovskite structure oriented along the (110) direction with minor impurities (PbO), as revealed from X-ray diffraction spectra. Further, microstructural analysis of the as-grown including chemical composition is also presented. The relationship between composition of the target, deposition conditions and film properties are then discussed.  相似文献   

14.
Phase separated AlSi films composed of Al cylinders embedded in an amorphous Si matrix were prepared on conducting Si substrates by filtered cathodic arc deposition. The compositional dependence of AlSi films on a negative substrate bias showed a different trend depending on the cathode composition because of the self-sputtering process during the deposition. The porous structure was obtained from the phase separated AlSi film after removal of Al cylinders by wet etching in an ammonia solution. Scanning electron microscope images of the etched AlSi films showed that the average diameter of pores was increased from 3 nm to 7 nm by applying a negative substrate bias voltage during the deposition. The honeycomb ordered arrangement of pores was observed at 0 V and − 25 V substrate bias. The substrate temperature during the depositions had almost the same effect on the film morphologies as the negative substrate bias.  相似文献   

15.
The characterization of titanium aluminum nitride (Ti,Al)N films prepared by ion mixing and vapor deposition (IVD) technique has been performed using several analytical techniques. In this study, the phase diagram of the films with various evaporation ratios Al/Ti was summarized successfully. The phase transition from single-phase NaCl to double-phase (NaCl+wurtzite) structure occurs with an increase of Al/Ti and/or with a decrease of substrate temperature. The (Ti,Al)N films with two-phase structure have a high performance in hardness. They are also highly resistant to oxidation. Consequently, the results suggest that the Al oxide layers formed on the top of (Ti,Al)N films during elevated temperature oxidation tests protect the films from further oxidation.  相似文献   

16.
Extremely smooth iridium (Ir) thin films were deposited on Si(1 0 0) substrate at lower temperature than 300 °C by pulsed laser deposition (PLD) technique using Ir target in a vacuum atmosphere. The crystal orientation, surface morphology, and resistivity of the Ir thin films were systematically determined as a function of substrate temperature. Well-crystallized and single-phase Ir thin films with (1 1 1) preferred orientation were obtained at substrate temperature of 200-300 °C. The surface roughness increased with the increasing of substrate temperature. Likewise, the room-temperature resistivity of Ir thin films decreased with increasing substrate temperature, showing a low value of (10.7±0.1) μΩ cm at 300 °C.  相似文献   

17.
InGaZnO thin films grown by pulsed laser deposition   总被引:1,自引:0,他引:1  
We fabricated InGaZnO (IGZO) ceramic target (In: Ga: Zn = 1: 1: 4 in atomic ratio) using solid-state reaction at ambient atmosphere, and deposited IGZO thin films on quartz glass at room temperature under various oxygen partial pressures using the pulsed laser deposition method. Influence of oxygen pressure on crystal structure, surface morphology, optical and electrical properties were investigated. It was found that all the films deposited at room temperature exhibit amorphous structure. On the other hand, the physical properties of the films like transparency, electron mobility, and free-electron concentration were found to be correlated to the oxygen pressure during the deposition and in turn to the possible oxygen vacancies or metallic interstitials in the films. The analysis of X-ray photoelectron spectra (XPS) of the films indicated that there are no metallic 3d states of In, Ga and Zn, suggesting that oxygen vacancies could be main defects that affect physical properties of the films.  相似文献   

18.
The optical properties of bismuth oxide films prepared by pulsed laser deposition (PLD), absorption in the photon energy range 2.50-4.30 eV and optical functions (n, k, ?1, and ?2) in the domain 3.20-6.50 eV, have been investigated. As-prepared films (d=0.05-1.50 μm) are characterized by a mixture of polycrystalline and amorphous phases. The fundamental absorption edge is described by direct optical band-to-band transitions with energies 2.90 and 3.83 eV. The dispersion of the optical functions provided values of 4.40-6.25 eV for electron energies of respective direct transitions. In the spectral range 400-1000 nm, bismuth oxide films show a normal dispersion, which can be interpreted in the frame of a single oscillator model.  相似文献   

19.
BiFe1 ? xMnxO3 thin films having thickness 65 and 130 nm was fabricated on LAO substrates using pulsed laser deposition technique and its structural and magnetic properties were examined. Atomic force microscopy images confirmed that, as the thickness of the films increases the particles size also increases resulting in the decrease of magnetization. The possible cause for the lowering of magnetization with film thickness was discussed. Increase of spontaneous magnetization in BiFeO3 at room temperature was observed with Mn substitution for Fe. The blocking temperature was found to decrease with increasing film thickness.  相似文献   

20.
采用脉冲激光沉积技术在(0001)取向的蓝宝石基片上外延生长了Pt单晶薄膜,研究了沉积温度和激光能量对Pt薄膜的晶体结构,表面形貌及电学性能的影响规律.X射线衍射(XRD)分析结果表明,在沉积温度650℃、激光脉冲频率1Hz和激光能量280mJ的条件下,制备得到的Pt(111)单晶薄膜,其(111)面ω摇摆曲线半高宽(FWHM)仅为0.068°.原子力显微镜(AFM)分析表明外延的Pt薄膜表面具有原子级平整度,其表面均方根粗糙度(RMS)约为1.776nm.四探针电阻测试结果显示薄膜方阻为1/962Ω/□,满足铁电薄膜的制备工艺对Pt底电极的要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号