首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Thin films of Zn1 − xMgxO, with Mg compositions in the range, 0 < x < 0.4, have been deposited onto soda-lime glass substrates using chemical spray pyrolysis. The effects of altering the alloy composition on the chemical and physical properties of the layers were investigated using X-ray photoelectron spectroscopy, atomic force microscopy, Raman, optical and electrical measurements. The data shows systematic shifts in the properties of the layers with Mg-content. In particular, the optical absorption data showed that the influence of Mg-content on the energy gap of Zn1 − xMgxO films is significant. Layers with x = 0.24 had an optical energy band gap, Eg = 3.87 eV. The best layers produced had properties appropriate for application as Cd-free buffer layers in copper indium gallium selenide (CIGS) solar cells.  相似文献   

2.
Far-infrared reflection spectra in wide temperature range was used to investigate the vibrational properties of Pb1−xMnxTe (x = 0.0002, 0.002, 0.02 and 0.1) mixed crystals. To analyse the experimental results we use dielectric function that takes into account the existence of plasmon-phonon as well as the plasmon-two different phonon interaction. The best fit method revealed two frequencies of plasmon-phonon coupled modes and three frequencies of plasmon-two different phonon coupled modes. Further, the values for two different LO modes and plasma frequency (ωP) are calculated. Results obtained from experimental spectra as the best fit, are in very good agreement with the theoretical prediction. The model of phonon behaviour based on Genzel's model was developed. It was found that the long wavelength optical phonon modes of these mixed crystals, exhibit an intermediate and two mode behaviour, coincidentally.  相似文献   

3.
X. Zhang 《Thin solid films》2009,518(5):1522-1526
A series of zirconium silicon nitride (Zr1−xSixN) thin films were grown on r-plane sapphire substrates using reactive RF magnetron co-sputtering of Zr and Si targets in a N2/Ar plasma. X-ray diffraction pole figure analysis, X-ray reflectivity, X-ray photoelectron spectroscopy (XPS), optical microscopy, and optical absorption spectroscopy were used to characterize the film stoichiometries and structures after growth at 200 °C and post-deposition annealing up to 1000 °C in ultra-high vacuum. The atomically clean r-plane sapphire substrates induce high quality (100) heteroepitaxy of ZrN films rather than the (111) orientation observed on steel and silicon substrates, but the addition of Si yields amorphous films at the 200 °C growth temperature. After the annealing treatment, films with Si content x < 0.15 have compressive stress and crystallize into a polycrystalline structure with (100) fiber texture. For x > 0.15, the films are amorphous and remain so even after ultra-high vacuum annealing at 1000 °C. XPS spectra indicate that the bonding changes from covalent to more ionic in character as Si―N bonds form instead of Zr―N bonds. X-ray reflectivity, atomic force microscopy (AFM) and optical microscopy data reveal that after post-deposition annealing the 100 nm thick films have an average roughness < 2 nm, except for Si content near x = 0.15 corresponding to where the film becomes amorphous rather than being polycrystalline. At this stoichiometry, evidence was found for regions of film delamination and hillock formation, which is presumably driven by strain at the interface between the film and sapphire substrate. UV-visible absorption spectra also were found to depend on the film stoichiometry. For the amorphous Si-rich films (x > 0.15), the optical band gap increases with Si content, whereas for Zr-rich films (x < 0.15), there is no band gap and the films are highly conductive.  相似文献   

4.
We report on the microstructure and optical properties of AlxOy–Pt–AlxOy interference-type multilayer films, deposited by electron beam (e-beam) deposition onto corning 1737 glass, silicon (1 1 1) and copper substrates. The structural properties were investigated by Rutherford backscattering spectrometry, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic force microscopy. The optical properties were extracted from specular reflection/transmission, diffuse reflectance and emissometer measurements. The stratification of the coatings consists of a semi-transparent middle Pt layer sandwiched between two layers of AlxOy. The top and bottom AlxOy layers were non-stoichiometric with no crystalline phases present. The Pt layer is in the fcc crystalline phase with a broad size distribution and spheroidal shape in and between the rims of AlxOy. The surface roughness of the stack was found to be comparable to the inter-particle distance. The optical calculations confirm a high solar absorptance of ∼0.94 and a low thermal emittance of ∼0.06 for the multilayer stack, which is attributed not only to the optimized nature of the multilayer interference stacks, but also to the specific surface morphology and texture of the coatings. These optical characteristics validate the spectral selectivity of the AlxOy–Pt–AlxOy interference-type multilayer stack for use in high temperature solar-thermal applications.  相似文献   

5.
Infrared optical properties of SrBi2−xNdxNb2O9 (SBNN) ceramics with different Nd compositions (from 0 to 0.2) have been investigated by near-normal incident reflectance technique. The experimental spectra in the wavenumbers range of 350-1500 cm−1 were analyzed using the Lorentz oscillator model for five infrared-active phonon mode observed. It is found that the frequencies of the NbO6 tilting and symmetric stretching modes linearly decrease with the Nd composition due to the octahedra distortion. The high-frequency dielectric constant varies in the range from 4.55 ± 0.04 to 4.80 ± 0.04. Owing to the contribution from the stronger electronic transitions, the real part of dielectric function Re(?) is estimated to about 4.0 in the high-frequency transparent region.  相似文献   

6.
Zn1−xFexO (x = 0, 0.052, 0.103, 0.157 and 0.212) films were prepared by the radio-frequency magnetron sputtering technique on Si (111) substrates and the microstructure of which was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The samples had a preferential c-axis orientation and the position of (002) diffraction peak shifted to the lower degree side with increasing Fe component. In order to investigate the optical transmittance properties of Zn1−xFexO films, we prepared the films on Al2O3 (001) substrates simultaneity and the UV-VIS optical transmittance spectra showed that the band gap energy of Zn1−xFexO films decreased with increase of Fe concentration. Photoluminescence spectra of the samples were observed at room temperature.  相似文献   

7.
Kyurhee Shim 《Thin solid films》2008,516(10):3143-3146
The principal band gaps (E(Γ),E(L), and E(X)) and bond lengths (d(x,y,z))of the alloy (AlxGa1−x)1−zInzPyAs1−y (where, 0 < x + z < 1, and 0 < y < 1) are calculated over the entire composition range based on the first order correlated function expansion (CFE) scheme. Defining the lattice strain parameter as , it is found that a good quality of alloy (defining ? < ∼ 0.5%) can be obtained in the composition region : 0 < x < ∼ 0.3, 0 < y < ∼ 0.2 and 0 < z < ∼ 0.1. The first order CFE lattice matching relations and corresponding band gaps for the alloy on the GaAs substrate are also determined. It is found that the principal band gaps of the alloy (AlxGa1−x)1−zInzPyAs1−y lattice matched to GaAs covers band gap ranges: 1.45 eV E < (Γ) 2.69 eV, 1.80 eV < E(L) < 2.38 eV, and 1.97 eV < E(X) < 2.20 eV, while the direct band gap covers from 1.45 eV to 2.05 eV. Our theoretical prediction was compared with the existing experimental data.  相似文献   

8.
TiN and Ti1−xAlxN thin films with different aluminum concentrations (x = 0.35, 0.40, 0.55, 0.64 and 0.81) were synthesized by reactive magnetron co-sputtering technique. The structure, surface morphology and optical properties were examined using Grazing Incidence X-ray Diffraction (GIXRD), Atomic Force Microscopy (AFM), Raman spectroscopy and spectroscopic ellipsometry, respectively. The structure of the films were found to be of rocksalt type (NaCl) for x = 0.0–0.64 and X-ray amorphous for x = 0.81. AFM topographies show continuous mound like structure for the films of x between 0.0 and 0.64, whereas the film with x = 0.81 showed smooth surface with fine grains. Micro-Raman spectroscopic studies indicate structural phase separation of AlN from TiAlN matrix for x > 0.40. Ti1−xAlxN has the tendency for decomposition with the increase of Al concentration whereas c-TiN and hcp-AlN are stable mostly. The optical studies carried out by spectroscopic ellipsometry measurements showed a change from metallic to insulating behavior with the increase in x. These films are found to be an insulator beyond x = 0.81.  相似文献   

9.
We propose La1−xSrxMnO3 as a new lead-free and ruthenium-free conductive oxide used for thick film resistors. The temperature coefficient of resistivity (TCR) of the La1−xSrxMnO3 was controlled systematically by changing the composition x. The TCR behavior depended on the change of the crystal symmetries and the average valence of Mn ions. The highest value of 9356 ppm/°C was obtained at the x = 0.35. Zero TCR was realized around 0.200 < x < 0.225 and 0.45 < x < 0.50, where the critical x values were related to the characteristic change from Mott-insulator to metallic behavior. The systematical controlling TCR and the zero TCR are the first to be demonstrated for conductive oxide.  相似文献   

10.
Ramakanta Naik 《Thin solid films》2010,518(19):5437-5441
In this paper, we report results of the optical properties of thermally deposited As2 − xS3 − xSbx thin films with x = 0.02, 0.07, 0.1 and 0.15. We have characterized the deposited films by Fourier Transform Infrared, Raman and X-ray photoelectron spectroscopy (XPS). The relationship between the structural and optical properties and the compositional variation were investigated. It was found that the optical bandgap decreases with increase in Sb content. The XPS core level spectra show a decrease in As2S3 percentage with increase in Sb content. This is confirmed from the shifting of the Raman peak from AsS3 vibrational mode towards SbS3 vibrational mode.  相似文献   

11.
A new method for obtaining epitaxial CdxHg1?xTe films is presented. The films were prepared by means of a technique in which HgTe was deposited under isothermal conditions onto vacuum-evaporated CdTe films. The structural, optical, electrical and photoelectric properties of the films obtained were investigated.Investigations of the structure showed that films prepared on crystalline substrates (mica, sapphire) are epitaxial while films on amorphous substrates are polycrystalline or textured with large grains. It was found that epitaxial growth on silicon coated with a thin oxide film is possible. Optical investigations showed very good lateral homogeneity of the chemical composition (ΔxΔl<10-1m-1). The deviation Δx from the assumed composition did not exceed 0.003. The results of measurements of the electrical properties showed that the method used permitted us to obtain p- and n-type layers with high or low (n<3x1020m-3 for x=0.2) carrier concentration. The charge carrier mobilities in the epitaxial layers were as high as 3.8 m2 V-1s-1 for x=0.1 at 300 K and exceeded 12 m2 V-1s-1 for x =0.2 at 77 K. The carrier lifetime τ in the best films reached 10-6s(for x=0.26 at 295 K and for x=0.2 at 77 K).The epitaxial CdxHg1?xTe films described here were used as photoconductive detectors in the wavelength range 2–14 μm and as photoelectromagnetic detectors in the range 8–14 μm.  相似文献   

12.
The optical absorption behaviour of thin films of copper sulphide (CuxS) formed by a vacuum deposition process at substrate temperatures of 27, 125 and 200°C was studied with a view to establishing a correlation with their structure. From the reflection and transmission data, the optical constants and the absorption coefficient were computed. Both the direct edge at 1.8 eV and the indirect edge at 0.855 eV, 1.075 eV and 1.105 eV respectively for these films were observed. These transitions explain the observed dependence of the absorption coefficient on the photon energy. The unusually high values of the absorption coefficient for the film deposited at room temperature were due to scattering-absorption and are explained on the basis of Maxwell Garnett theory. For CuxS compositions with 1.96 < x < 2.0, no changes in the direct edge were observed. The indirect edge shifts upwards by 0.22 eV when disordering of the copper sublattice occurs in the Cu2S phase. The indirect transitions are associated with the changes in lattice structure and stoichiometry.  相似文献   

13.
Spectrally selective AlxOy/Pt/AlxOy multilayer absorber coatings were deposited onto corning 1737 glass, Si (111) and copper substrates using electron beam (e-beam) vacuum evaporator at room temperature. The employment of ellipsometric measurements and optical simulation was proposed as an effective method to optimize and deposit multilayer solar absorber coatings. The optical constants (n and k) measured using spectroscopic ellipsometry, showed that both AlxOy layers, which used in the coatings, were dielectric in nature and the Pt layer was semi-transparent. The optimized multilayer coatings exhibited high solar absorptance α ∼ 0.94 ± 0.01 and low thermal emittance ? ∼ 0.06 ± 0.01 at 82 °C. The Rutherford backscattering spectroscopy (RBS) data of AlxOy/Pt/AlxOy multilayer absorber indicated the AlxOy layers present in the coating were nearly stoichiometry. The scanning electron microscope analysis (SEM) result indicated that the average diameter and inter-particles distance of Pt grains were statistically about 146 ± 0.17 nm and 6-10 ± 0.2 nm respectively.  相似文献   

14.
A series of mixed orthovanadates with general formula La1−xCexVO4 (0<x<1) were synthesized and characterized using powder XRD and FTIR techniques. The monoclinic phase of LaVO4 was retained for the samples with x≤0.2, while the tetragonal phase of CeVO4 was stabilized in x≥0.5 compositions. On the other hand, the mixed phases of LaVO4 and La0.5Ce0.5VO4 existed for the values of 0.2<x<0.5. The lattice parameters, deduced by indexing of XRD patterns, were found to decrease with the increasing cerium content in the case of both the monoclinic and the tetragonal phases of substituted orthovanadates having single-phase compositions. This trend can be attributed to the presence of Ce in +3 oxidation state and to its smaller ionic size compared to that of La3+. The temperature-programmed reduction/oxidation studies showed that, compared to CeVO4 or LaVO4, the single-phase mixed orthovanadates exhibited a better reproducibility during the repeated cycles of reduction/oxidation.  相似文献   

15.
The Al doping effects on high-frequency magneto-electric properties of Zn1 − x − yAlxCoyO (x = 0-10.65 at.%) thin films were systematically studied. In the current work, the Zn1 − x − yAlxCoyO thin films were deposited by magnetron co-sputtering onto quartz substrates. The magneto-impedance spectra of the thin films were measured by an impedance analyzer. Among all the doped films studied, the thin film with 6.03 at.% Al-doping showed the highest ac conductivity and relaxation frequency. To characterize the relaxation mechanism underlying the magneto-electric properties, a Cole-Cole impedance model was applied to analyze the impedance spectra. The analyzed result showed that the magneto-impedance of the Zn1 − x − yAlxCoyO is contributed by multiple processes of magnetization dynamics and dielectric relaxation. The results imply that Zn1 − x − yAlxCoyO may be applicable for high-frequency magneto-electric devices.  相似文献   

16.
The photovoltaic Cd1−xZnxS thin films, fabricated by chemical bath deposition, were successfully used as n-type buffer layer in CuInGaSe2 (CIGS) solar cells. Comprehensive optical properties of the Cd1−xZnxS thin films were measured and modeled by spectroscopic ellipsometry (SE), which is proven to be an excellent and non-destructive technique to determine optical properties of thin films. The optical band gap of Cd1−xZnxS thin films can be tuned from 2.43 eV to 3.25 eV by controlling the Zn content (x) and deposition conditions. The wider-band-gap Cd1−xZnxS film was found to be favorable to improve the quantum efficiency in the wavelength range of 450-550 nm, resulting in an increase of short-circuits current for solar cells. From the characterization of quantum efficiency (QE) and current-voltage curve (J-V) of CIGS cells, the Cd1−xZnxS films (x = 0.32, 0.45) were demonstrated to significantly enhance the photovoltaic performance of CIGS solar cell. The highest efficiency (10.5%) of CIGS solar cell was obtained using a dense and homogenous Cd0.68Zn0.32S thin film as the buffer layer.  相似文献   

17.
Gex Sb40−x Se60 (x = 0, 2.42 and 23.41 at.%) thin chalcogenide films were deposited on glass and quartz substrates by the conventional thermal evaporation technique at 300 K. The chemical composition of the bulk material and as-deposited films were determined by energy dispersive analysis X-ray spectrometry (EDAX). X-ray diffraction pattern (XRD) of Gex Sb40−x Se60 (x = 0, 2.42 and 23.41 at.%) thin films indicates that they have amorphous structure. The optical transmission and reflection spectra were measured in the range of 500 to 2500 nm. The optical absorption coefficient spectra were studied for deposited samples. It is observed that the optical absorption edge shift to higher energy range, as the germanium content, x, increases in the film. The type of electronic transition, responsible for the optical properties, is indirect allowed transition. It is found that the optical band gap increases as the Ge content increases.The average coordination number (Nc) in Gex Sb40−x Se60 films increases, but the number of chalcogenide atoms remains constant. The number of Ge - Se bonds and the average bond energy of the system increase with the increase of the average coordination number. The optical band gap, Eg, increases with the increase of the average coordination number, (Nc). Also the energy gap, E04, is discussed in terms of its relation to the chemical composition. The dispersion of the refractive index (n) is discussed in terms of the Single Oscillator Model (SOM) (Wimple - Didomenico model). The single oscillator energy (E0), the dispersion energy (Ed) and the optical dielectric constant (?) are also estimated.  相似文献   

18.
We have re-examined the evolution of orthorhombic cell parameters as a function of the substitution parameter x in solid solutions SrxCa1−xCO3 in order to clarify contradictory results found in the literature. Calcium carbonate has been synthesized in the presence of Sr2+ ions (Sr/Ca molar ratio ranging from 10−2 to 1), using experimental conditions that previously allowed us to obtain monophasic aragonite. The precipitates obtained have been analysed using powder X-ray diffractometry (XRD) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The powder XRD data confirm the occurrence of purely monophasic strontian-aragonites. Moreover, the cell parameters as well as the substitution parameter x have been refined for 0 < x < 0.5 against powder XRD data through Rietveld refinement. On the other hand, x was deduced from chemical analysis by ICP-AES. The agreement between both techniques is very satisfactory. The evolution of the cell parameters as a function of x is found to be linear within the studied range, this feature being confirmed for the overall domain (0 ≤ x ≤ 1) if one takes into account the cell parameters of aragonite CaCO3 and strontionite SrCO3. This result, that is consistent with the existence of continuous solid solutions obeying the Vegard's law in the SrxCa1−xCO3 system, contradicts previously published assertions.  相似文献   

19.
Thin Cd1-xZnxS films with 0 < x < 1 were deposited on glass substrates by electronic bombardment of a mixture of CdS powder and ZnS powder. Analysis of the films by Rutherford backscattering and X-ray diffraction methods showed good crystallinity and a uniform zinc distribution.  相似文献   

20.
The plasma in a cathodic arc evaporation process used for the deposition of Cr1−xOx films was studied by an optical emission spectroscopy (OES). With the introduction of Ar and oxygen into the chamber at deposition pressures from 0.7 Pa to 2.7 Pa, high density of evaporated chromium catalyzes the decomposition of oxygen reactive gas, and induces the formation of Cr1−xOx films. Optical emission spectra including atomic and ionized Cr, excited and ionized oxygen revealed that excitation, ionization and charge transfer reactions of the Cr-O plasma occurred during the Cr1−xOx deposition process. A simplified empirical model which incorporates the relevant atomic processes in the gas phase with the chemical composition and deposition rate of the deposited Cr1−xOx coating was developed. Rhombohedral Cr2O3 and tetragonal CrO2 were observed in the Cr1−xOx coatings deposited at higher pressure than 1.3 Pa. The Cr1−xOx coating depicted a dense and compact microstructure with well-attached interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号