首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model has been developed to predict the elastic moduli in composites reinforced with both particles and fibers. In the model the matrix material and the particles, which are assumed to be homogeneously distributed, form an effective matrix. The characteristics of this effective matrix is calculated using a theory formulated by Ledbetter and Datta. The effective matrix is then considered to be reinforced with fibers lying in one plane but randomly oriented in that plane. The effect of the 2-dimensionally random orientation of the fibers on the elastic moduli of the composites is determined in two steps. First the composite cylinders model by Hashin and Rosen for an aligned fiber system is employed, and then a geometric averaging procedure suggested by Christensen and Waals is performed. Using this model, the Young's and shear moduli were calculated for three samples with different aluminum matrices and volume fractions of particles (9, 13, and 17%) but the same fiber content (6%). The same elastic moduli were also determined using ultrasonic velocity measurements. The agreement between calculated and measured elastic moduli is found to be very good. Also, the elastic anisotropies between directions of the fiber rich plane and that normal to the plane could be predicted by the model.This article is dedicated to Professor Dr. Paul Höller on the occasion of his 65th birthday.  相似文献   

2.
碳化硅增强铝基复合材料的力学性能和断裂机制   总被引:1,自引:0,他引:1  
研究了碳化硅颗粒(SiCp)尺寸对用粉末冶金法制备体积分数为15%的SiCp/2009铝基复合材料力学性能和断裂机制的影响.结果表明,复合材料的强度随着SiCp尺寸的增大而减小,塑性则随着颗粒的增大而增大.当SiCp尺寸为1.5μm时,SiCp/2009A1复合材料的断裂主要以界面处撕裂和基体材料的开裂为主;当SiCp尺寸为20 μm时,复合材料的断裂主要以SiCp断裂为主;当SiCp尺寸处于两者之间时,SiCp/2009A1复合材料界面处撕裂和SiCp断裂的共同作用决定复合材料的断裂.  相似文献   

3.
T.-W. Kim  C.H. Lee 《Composites Part A》2004,35(12):1375-1383
Vacuum hot pressing has been used for the development of Ti-MMCs using foil–fiber–foil method, and a unified micro-mechanical model has been presented to determine the densification behavior. The effects of processing conditions on the consolidation, together with microstructural evolutions of the materials have been investigated. The explicit representation of fiber array, which is coupled with deformation behavior of matrix materials, is modeled in finite element simulation to determine the effect of geometrical arrangements on densification process. The approach is then used to model the densification behavior of porous plastic materials using the parameters obtained, and comparisons are made with experimental data. As shown by the results, either increasing temperature or pressure leads to increasing densification rate but the conditions should be determined by the precisely controlled geometrical arrangements with processing conditions. Further experimental investigation of the densification behavior of SiC/Ti–6Al–4V composites using thermo-acoustic emission analysis has been performed, and the results obtained are compared with the model predictions. Good comparisons are achieved.  相似文献   

4.
This study investigates the effects of particle size, volume fraction, random dispersion and local concentration underneath a spherical indenter on the indentation response of particle reinforced metal matrix Al 1080/SiC composites. The ceramic particles in certain sizes and volume fractions were randomly distributed through the composite structure in order to achieve a similar structure to an actual microstructure as possible. The particle size and volume fraction affected considerably indentation depths and deformed indentation surface profiles. The indentation depth increases with increasing particle size, but decreases with increasing particle volume fraction. The experimental indentation depths were in agreement with numerical indentation depths in case the local particle concentration effect is considered. The local particle concentration plays an important role on the peak indentation depth. For small particle sizes and large volume fractions the random particle distribution affects the deformed surface profiles as well as the indentation depths. However, its effect is minor on residual stress and strain distributions rather than levels in the indentation region.  相似文献   

5.
Abstract

By incorporating the dislocation strengthening effect into the Mori–Tanaka method, a new hybrid approach is developed in the present paper for calculating the deformation response of SiCp/Al composites. The diameters of the particles are 1, 5, 20 and 56 μm. Both numerical and experimental results indicate a close relationship between the particle size and the deformation behaviour of the composites at a constant particle volume fraction. The yield strength and plastic work hardening rate of the composites increase with decreasing particle size. The predicted stress–strain behaviour of the composites is in qualitative agreement with the experimental results. By incorporating Weibull statistics for particle fracture, the results simulated are agreed well with the experimental results for particle size >5 μm.  相似文献   

6.
This paper discusses the methodology of microstructure based elastic–plastic finite element analysis of particle reinforced metal matrix composites. This model is used to predict the failure of two dimensional microstructure models under tensile loading conditions. A literature survey indicates that the major failure mechanism of particle reinforced metal matrix composites such as particle fracture, interfaces decohesion and matrix yielding is mainly dominated by the distribution of particles in the matrix. Hence, analyses were carried out on the microstructure of random and clustered particles to determine its effect on strength and failure mechanisms. The finite element analysis models were generated in ANSYS, using scanning electron microscope images. The percentage of major failures and stress–strain responses were predicted numerically for each microstructure. It is evident from the analysis that the clustering nature of particles in the matrix dominates the failure modes of particle reinforced metal matrix composites.  相似文献   

7.
This paper presents a method of producing uniform particle strengthened bonds between pieces of aluminum metal matrix composite (Al-MMCs), of strength equal to that of the substrate material. SiC particle reinforced Zn-based filler metals were fabricated by mechanical stir casting and ultrasonic treatment, and then used to join pieces of SiCp/A356 composite with the aid of ultrasonic vibration. The filler metals made by mechanical stirring were porous and contained many particle clusters. Ultrasonic vibration was used to disperse the agglomerates and prevent further coagulation of SiC particles during joining, but the method failed to eliminate the porosity, resulting in a highly porous bond. The filler metal treated by ultrasonic vibration was free of defects and produced a non-porous bond strengthened with uniform particles between pieces of SiCp/A356 composite. The presence of surface oxide films at the bonding interface significantly degraded the performance of SiC particle reinforced bond. Removal of this oxide film by at least 4 s of ultrasonic vibration significantly increased the bond strength, reaching a value equal to that of the substrate metal.  相似文献   

8.
《Materials Science & Technology》2013,29(9-10):1065-1069
Abstract

The potential use of particle reinforced metal matrix composites (MMCs) for demanding structural applications highlights the need for an effective method to predict the fatigue performance of notched components. The present paper evaluates the ‘critical strain’ technique and its suitability with respect to particle reinforced MMC alloys. Strain controlled fatigue data generated on the aluminium alloy 2124 reinforced by two different fractions of 2–3 μm SiC particles are used to predict the lives of a ‘pseudocomponent’ representative of engineering situations. It is demonstrated that both alloys are essentially cyclically stable compared with monotonic work hardening curves and, where available, data from tension and torsion modes superimpose on a Von Mises effective stress-strain criterion. The implications of the fatigue life analysis are discussed.  相似文献   

9.
10.
综述了非连续增强金属基复合材料剧烈塑性变形(SPD)行为的研究进展,系统阐述了等径弯曲通道变形(ECAP)、高压扭转(HPT)、多向锻造(MF)、累积叠轧(ARB)和循环挤压压缩(CEC)5种SPD的加工原理和方法。集中介绍了这些方法在铝基、镁基、铜基和钛基等金属基复合材料方面应用的研究进展。重点介绍了金属基复合材料SPD的微观组织演化和变形力学行为,详细阐明了金属基复合材料SPD机制以及超细晶形成机理,指出了金属基复合材料在SPD中存在的深层次问题及发展趋势,展望了利用SPD方法制备超细晶非连续增强金属基复合材料的应用前景。  相似文献   

11.
12.
《Composites Part B》2000,31(1):29-37
The influence of inclusion geometry and thermal residual stresses and strains on the mechanical behaviour of a 20 vol% Al2O3 particulate reinforced 6061-T0 Al alloy metal matrix composite is investigated through finite element analysis. The introduction of residual thermal stresses/strains prior to external loading leads to a decrease of the proportional limit, 0.2% offset yield stress and the apparent stiffness. The residual stresses/strains are shown to have a greater effect on the composite behaviour under compressive loading than tensile loading. The residual stresses/strains have little effect on the cyclic behaviour of the composite. In only the second cycle, the difference between the cyclic curves, with and without a thermal history, was 2 MPa. Use of a cube shaped particle, with sharp corners and edges, in the unit cell model led to much greater initial hardening behaviour than spherical inclusions, and therefore a greater 0.2% offset yield stress due to stress/strain localisation at the particle corners and edges. This results in regions of constrained plasticity and high stress triaxiality in the matrix around the particle, producing improved load transfer in the composite. It is shown that inclusion aspect ratio, in the range of 0.5–2.0, has an impact on the yield stress. A minimum yield stress occurred at an aspect ratio of approximately 0.9 with significant increases on either side of this point. The influence of residual stress/strain had a similar effect throughout the aspect ratio range except tensile loading, following thermal treatment, on unit cells with inclusion aspect ratios greater than 1.5 resulted in the highest yield stresses.  相似文献   

13.
The high temperature deformation behavior of Al 6061 composites reinforced with SiC and Al2O3 particles has been studied in the temperature range of 300–550°C and the strain rate range of 0.1–3.0/sec by hot torsion test. The deformation efficiency , given by (2m/m + 1), where m is the strain rate sensitivity, is calculated as a function of temperature and strain rate to obtain iso-efficiency contour map. The composite reinforced with SiC particle exhibited a domain of dynamic recrystallization (DRX) with a peak efficiency of 40% at the temperature range of 450–500°C and strain rate range of 0.2–0.5/sec. On the other hand, the composite reinforced with Al2O3 particle showed the DRX domain at the temperature range of 450–480°C and strain rate range of 0.1–0.2/sec. The characteristics of these domain have been investigated with the help of microstructural observation and hot ductility measurements.  相似文献   

14.
SiC-reinforced aluminum matrix composites were manufactured by powder metallurgy using either single or dual particle sized SiC powders and samples sintered under argon atmosphere. Quasi-static loading, low-speed impact tests and hardness tests were used to investigate mechanical behavior and found that dual particle size composites had improved hardness and impact performance compared to single particle size composites. Sample microstructure, particle distributions, plastic deformations and post-testing damages were examined by scanning electron microscopy and identified microstructure agglomerations in SPS composites. Impact traces were characterized by broken and missing SiC particles and plastically deformed composite areas.  相似文献   

15.
Metal reinforced Metal Matrix Composites (MMMCs) made by combining an aluminium alloy matrix with stainless steel reinforcing wires are potentially cheaper and tougher than continuous fibre ceramic reinforced Metal Matrix Composites (MMCs). Although they do not give as great enhancements in stiffness and strength, worthwhile gains are achieved. Such MMMCs can be produced by Hot Isostatic Pressing (HIPping), which reduces interfacial reactions in comparison with liquid metal routes. Here, stainless steel (316L) and commercial purity aluminium wires were used to make bundles which were inserted into mild steel cans for HIPping at 525 °C/120 min/100 MPa. Some stainless steel wires were pre-coated with A17Si, to examine the effect of coatings on mechanical properties. Specimens were evaluated in terms of their tensile and fatigue properties. During HIPping, cans collapsed anisotropically to give different cross-section shapes, and for larger diameter cans, there was also some longitudinal twisting. Wires tended to be better aligned after HIPping in the smaller diameter cans, which produced material having higher modulus and UTS. Higher volume fractions of reinforcement tend to give better fatigue properties. Composites with coated stainless steel wires gave higher composite elongation to failure than uncoated wires. Both uncoated and coated wires failed by fatigue during fatigue testing of the composite. This contrasts with ceramic reinforced MMCs where the fibres fracture at weak points and then pull out of the matrix.  相似文献   

16.
In this study, three-dimensional heterogeneous and homogenized finite element models are used to predict the indentation response of particle reinforced metal matrix composites (PRMMCs). The matrix is assumed to have elasto-plastic behavior whereas the particles (uniform in size and spherical in shape) are assumed to be harder than the matrix, and possess linear elastic behavior. The particles (25 % by volume) are randomly distributed in the metal matrix. Two modeling approaches are used. In the first approach, the PRMMC is fully replaced by an equivalent homogenous material, and its material properties are obtained through homogenization using representative volume element approach under periodic boundary conditions. In second approach, a small cubical volume under the indenter is modeled as heterogeneous material with randomly distributed particles, whereas the remaining domain is assigned equivalent material properties obtained through homogenization. The elastic material properties obtained through simulations are found within Hashin–Shtrikman bounds. A suitable size cubical volume consisting of heterogeneities under the indenter is established by considering different cubical volumes so as to capture the actual indentation response. The simulations are also carried out for different particle sizes to establish a suitable particle size. These simulations show that the second modeling approach yields harder indentation response as compared to first modeling approach due to the local particle concentration under the indenter.  相似文献   

17.
Various models of creep deformation of composite materials are reviewed and their predictions compared with available experimental data. The implications of rule-of-mixtures strengthening when (a) both matrix and reinforcing phase are subject to creep deformation and (b) the reinforcement extends elastically in a creeping matrix for the establishment of steady state creep and for the representation of creep data for composites are discussed.Evidence of deviation from rule-of-mixtures behaviour is given, particularly where the dispersed phase can lead to either strengthening or weakening of the matrix. The value of analysing transient creep following stress changes to elucidate the creep mechanisms will be discussed. It will be shown that the reinforcement can influence matrix creep by (i) introducing a threshold stress and (ii) altering the deformation kinetics. In some nickel-base alloys, the latter factor can lead to significant strain softening that prevents the establishment of steady state creep.  相似文献   

18.
《Composites Part A》2007,38(2):484-494
In this paper, the impact behaviour of aluminium and silicon carbide (SiC) particle reinforced aluminium matrix composites under different temperature conditions was determined. Charpy impact tests were performed on as extruded and heat treated specimen at temperatures varying from −176 to 300 °C. Composite specimens based on aluminium alloys of 2124, 5083 and 6063 and reinforced by SiC particles were manufactured. Two different SiC sizes of 157 μm and 511 μm and two different extrusion ratios of 13.63:1 and 19.63:1 were used. The results of instrumented impact tests were compared with the microstructural and fractographic observations. The failure mechanisms and deformation behaviour of unreinforced alloys and composites were assessed. The impact behaviour of composites was affected by clustering of particles, particle cracking and weak matrix-reinforcement bonding. Agglomeration of particles reduced the impact strength of Al 2124 and 6063 based composites. Alumınum 6063 alloys and composites showed a better impact strength. The impact strength of 6063 composites increased with particle size and extrusion ratio. The effects of the test temperature on the impact behaviour of all materials were not very significant.  相似文献   

19.
Abstract

The room temperature fatigue performance of two Saffil reinforced metal matrix composites manufactured by squeeze forming is assessed. For the composite with an LM 13 matrix, introduction of Saffil does not result in an increase in the ultimate tensile strength, and the fatigue performance is inferior to the unreinforced alloy. By contrast, the composite with a 6082 type matrix exhibits a markedly superior ultimate tensile strength and stiffness compared with the unreinforced equivalent and this is coupled with an improved overall fatigue performance.

MST/767  相似文献   

20.
Particulate reinforced metal matrix composites — a review   总被引:7,自引:0,他引:7  
The physical and mechanical properties that can be obtained with metal matrix composites (MMCs) have made them attractive candidate materials for aerospace, automotive and numerous other applications. More recently, particulate reinforced MMCs have attracted considerable attention as a result of their relatively low costs and characteristic isotropic properties. Reinforcement materials include carbides, nitrides and oxides. In an effort to optimize the structure and properties of particulate reinforced MMCs various processing techniques have evolved over the last 20 years. The processing methods utilized to manufacture particulate reinforced MMCs can be grouped depending on the temperature of the metallic matrix during processing. Accordingly, the processes can be classified into three categories: (a) liquid phase processes, (b) solid state processes, and (c) two phase (solid-liquid) processes. Regarding physical properties, strengthening in metal matrix composites has been related to dislocations of a very high density in the matrix originating from differential thermal contraction, geometrical constraints and plastic deformation during processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号