首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Organization into gene clusters is an essential and diagnostic feature of Hox genes. Insect and nematode genomes possess single Hox gene clusters (split in Drosophila); in mammals, there are 38 Hox genes in four clusters on different chromosomes. A collinear relationship between chromosomal position, activation time and anterior expression limit of vertebrate Hox genes suggests that clustering may be important for precise spatiotemporal gene regulation and hence embryonic patterning. Hox genes have a wide phylogenetic distribution within the metazoa, and are implicated in the control of regionalization along the anteroposterior body axis. It has been suggested that changes in Hox gene number and genomic organization played a role in metazoan body-plan evolution, but identifying significant changes is difficult because Hox gene organization is known from only very few and widely divergent taxa (principally insects, nematodes and vertebrates). Here we analyse the complexity and organization of Hox genes in a cephalochordate, amphioxus, the taxon thought to be the sister group of the vertebrates. We find that the amphioxus genome has only one Hox gene cluster. It has similar genomic organization to the four mammalian Hox clusters, and contains homologues of at least the first ten paralogous groups of vertebrate Hox genes in a collinear array. Remarkably, this organization is compatible with that inferred for a direct ancestor of the vertebrates; we conclude that amphioxus is a living representative of a critical intermediate stage in Hox cluster evolution.  相似文献   

2.
The class 3 Hox gene orthologue in insects, zerknüllt (zen), is not expressed along the anterior-posterior axis, but only in extra-embryonic tissues, suggesting that it has lost its function as a normal Hox gene. To analyse whether this loss of Hox gene function has already occurred in a basal arthropod lineage, we have isolated a Hox3 orthologue from the spider Cupiennius salei. In contrast to the insect zen sequences, which have a highly diverged homeobox, the spider Hox3 gene orthologue, Cs-Hox3, shows a high sequence similarity to the class 3 Hox genes of other phyla, including chordates. In situ hybridization in early embryos shows that it is expressed in a continuous region covering the pedipalp segment and the four leg-bearing segments. This expression pattern suggests a Hox-gene-like function for Cs-Hox3. On the other hand, the expression pattern does not strictly follow the colinearity rule, as it overlaps fully with the expression domain of the class 1 orthologue of the spider, Cs-lab. Still, our data suggest that the ancestor of the arthropods must have had a class 3 Hox gene with a function in anterior-posterior axis specification and that this function has been lost in the lineage leading to the insects.  相似文献   

3.
We have cloned, from an oribatid mite, a gene homologous to the zerknült (zen) genes of insects and the Hox 3 genes of vertebrates. Hox genes specify cell fates in specific regions of the body in all metazoans studied and are expressed in antero-posteriorly restricted regions of the embryo. This is true of the vertebrate Hox 3 but not of the zen genes, the insect homologs, and it has been proposed that the zen genes have lost their Hox-like function in the ancestor of the insects. We studied expression of a mite Hox 3/zen homolog and found that it is expressed in a discrete antero-posterior region of the body with an anterior boundary coinciding with that of the chelicerate homolog of the Drosophila Hox gene, proboscipedia, and propose that its loss of Hox function in insects is due to functional redundancy due to this overlap with another Hox gene.  相似文献   

4.
5.
6.
Estimation of Hox gene cluster number in lampreys   总被引:1,自引:0,他引:1  
Hox gene clusters are linked arrays of related homeobox genes with important roles in patterning the main body axis of animal embryos. Almost all invertebrates analyzed in detail, including a cephalochordate, have a single Hox gene cluster. In contrast, mammals have four such clusters inferred to have arisen by duplication. Data from other jawed vertebrates, including teleost fish, suggest they have at least four Hox gene clusters, implying that cluster duplication dates to very early in vertebrate evolution. Lampreys descended from one of the earliest vertebrate lineages and are thus critical in dating the duplication events. Here we analyze the Hox gene complement of a freshwater lamprey, Lampetra, using degenerate PCR. By analysis of the DNA sequences, deduced protein sequences, and by comparison to previous data from the distantly related sea lamprey, we conclude that lampreys have approximately 21 Hox genes from paralogous groups 1-10, plus a group 13 Hox gene. The data support the presence of three Hox gene clusters in lampreys more strongly than they support the presence of one, two or four gene clusters. We discuss how this situation may have arisen in evolution.  相似文献   

7.
Development of paired appendages at appropriate levels along the primary body axis is a hallmark of the body plan of jawed vertebrates. Hox genes are good candidates for encoding position in lateral plate mesoderm along the body axis and thus for determining where limbs are formed. Local application of fibroblast growth factors (FGFs) to the anterior prospective flank of a chick embryo induces development of an ectopic wing, and FGF applied to posterior flank induces an ectopic leg. If particular combinations of Hox gene expression determine where wings and legs develop, then formation of additional limbs from flank should involve changes in Hox gene expression that reflect the type of limb induced. Here we show that the same population of flank cells can be induced to form either a wing or a leg, and that induction of these ectopic limbs is accompanied by specific changes in expression of three Hox genes in lateral plate mesoderm. This then reproduces, in the flank, expression patterns found at normal limb levels. Hox gene expression is reprogrammed in lateral plate mesoderm, but is unaffected in paraxial mesoderm. Independent regulation of Hox gene expression in lateral plate mesoderm may have been a key step in the evolution of paired appendages.  相似文献   

8.
Recent studies show that Hox homeodomain proteins from paralog groups 1 to 10 gain DNA binding specificity and affinity through cooperative binding with the divergent homeodomain protein Pbx1. However, the AbdB-like Hox proteins from paralogs 11, 12, and 13 do not interact with Pbx1a, raising the possibility of different protein partners. The Meis1 homeobox gene has 44% identity to Pbx within the homeodomain and was identified as a common site of viral integration in myeloid leukemias arising in BXH-2 mice. These integrations result in constitutive activation of Meis1. Furthermore, the Hoxa-9 gene is frequently activated by viral integration in the same BXH-2 leukemias, suggesting a biological synergy between these two distinct classes of homeodomain proteins in causing malignant transformation. We now show that the Hoxa-9 protein physically interacts with Meis1 proteins by forming heterodimeric binding complexes on a DNA target containing a Meis1 site (TGACAG) and an AbdB-like Hox site (TTTTACGAC). Hox proteins from the other AbdB-like paralogs, Hoxa-10, Hoxa-11, Hoxd-12, and Hoxb-13, also form DNA binding complexes with Meis1b, while Hox proteins from other paralogs do not appear to interact with Meis1 proteins. DNA binding complexes formed by Meis1 with Hox proteins dissociate much more slowly than DNA complexes with Meis1 alone, suggesting that Hox proteins stabilize the interactions of Meis1 proteins with their DNA targets.  相似文献   

9.
Here we investigate the mechanisms by which Hox genes compete for the control of positional identity. Functional dominance is often observed where different Hox genes are co-expressed, and frequently the more posteriorly expressed Hox gene is the one that prevails, a phenomenon known as posterior prevalence. We use dpp674, a visceral mesoderm-specific enhancer of decapentaplegic (dpp), to investigate functional dominance among Hox genes molecularly. We find that posterior prevalence does not adequately describe the regulation of dpp by Hox genes. Instead, we find that abdominal-A (abd-A) dominates over the more posterior Abdominal-B (Abd-B) and the more anterior Ultrabithorax (Ubx). In the context of the dpp674 enhancer, abd-A functions as a repressor whereas Ubx and Abd-B function as activators. Thus, these results suggest that other cases of Hox competition and functional dominance may also be understood in terms of competition for target gene regulation in which repression dominates over activation.  相似文献   

10.
The Strongylocentrotus purpuratus genome contains a single ten-gene Hox complex >0.5 megabase in length. This complex was isolated on overlapping bacterial artificial chromosome and P1 artificial chromosome genomic recombinants by using probes for individual genes and by genomic walking. Echinoderm Hox genes of Paralog Groups (PG) 1 and 2 are reported. The cluster includes genes representing all paralog groups of vertebrate Hox clusters, except that there is a single gene of the PG4-5 types and only three genes of the PG9-12 types. The echinoderm Hox gene cluster is essentially similar to those of the bilaterally organized chordates, despite the radically altered pentameral body plans of these animals.  相似文献   

11.
From our current understanding of the genetic basis of development and pattern formation in Drosophila and vertebrates it is commonly thought that clusters of Hox genes sculpt the morphology of animals in specific body regions. Based on Hox gene conservation throughout the animal kingdom it is proposed that these genes and their role in pattern formation evolved early during the evolution of metazoans. Knowledge of the history of Hox genes will lead to a better understanding of the role of Hox genes in the evolution of animal body plans. To infer Hox gene evolution, reliable data on lower chordates and invertebrates are crucial. Among the lower triploblasts, the body plan of the ribbonworm Lineus (nemertini) appears to be close to the common ancestral condition of protostomes and deuterostomes. In this paper we present the isolation and identification of Hox genes in Lineus sanguineus. We find that the Lineus genome contains a single cluster of at least six Hox genes: two anterior-class genes, three middle-class genes, and one posterior-class gene. Each of the genes can be definitely assigned to an ortholog group on the basis of its homeobox and its flanking sequences. The most closely related homeodomain sequences are invariably found among the mouse or Amphioxus orthologs, rather than Drosophila and other invertebrates. This suggests that the ribbonworms have diverged relatively little from the last common ancestors of protostomes and deuterostomes, the urbilateria.  相似文献   

12.
13.
14.
15.
Two classes of homeodomain proteins, Hox and Engrailed, have been shown to act in concert with the atypical homeodomain proteins Pbx and extradenticle. We now show that specific residues located within the Pbx homeodomain are essential for cooperative DNA binding with Hox and Engrailed gene products. Within the N-terminal region of the Pbx homeodomain, we have identified a residue that is required for cooperative DNA binding with three Hox gene products but not for cooperativity with Engrailed-2 (En-2). Furthermore, there are similarities between heterodimeric interactions involving the yeast mating type proteins MATa1 and MATalpha2 and those that allow the formation of Pbx/Hox and Pbx/En-2 heterodimers. Specifically, residues located in the a1 homeodomain that were previously shown to form a hydrophobic pocket allowing the alpha2 C-terminal tail to bind, are also required for Pbx/Hox and Pbx/En-2 cooperativity. Furthermore, we show that three residues located in the turn between helix 1 and helix 2, characteristic of many atypical homeodomain proteins, are required for cooperative DNA binding involving both Hox and En-2. Replacement of the three residues located in the turn between helix 1 and helix 2 of the Pbx homeodomain with those of the atypical homeodomain proteins controlling cell fate in the basidiomycete Ustilago maydis, bE5 and bE6, allows cooperative DNA binding with three Hox members but abolishes interactions with En-2. The data suggest that the molecular mechanism of homeodomain protein interactions that control cell fate in Saccharomyces cerevisiae and in the basidiomycetes may well be conserved in part in multicellular organisms.  相似文献   

16.
17.
18.
19.
20.
Although the role of Hox genes in patterning the mammalian body plan has been studied extensively during embryonic and fetal development, relatively little is known concerning Hox gene function in adult animals. Analysis of mice with mutant Hoxa9, Hoxb9, and Hoxd9 genes shows that these paralogous genes are required for mediating the expansion and/or differentiation of the mammary epithelium ductal system in response to pregnancy. Mothers with these three mutant genes cannot raise their own pups, but the pups can be rescued by fostering by wild-type mothers. Histologically, the mammary glands of the mutant mothers seem normal before pregnancy but do not develop properly in response to pregnancy and parturition. Hoxa9, Hoxb9, and Hoxd9 are expressed normally in adult mammary glands, suggesting a direct role for these genes in the development of mammary tissue after pregnancy. Because loss-of-function mutations in these Hox genes cause hypoplasia of the mammary gland after pregnancy, it may be productive to look for misexpression of these genes in mammary carcinomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号