首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 449 毫秒
1.
Numerous two-cell voltage-clamp studies have concluded that the electrical conductance of mammalian cardiac gap junctions is not modulated by the transjunctional voltage (Vj) profile, although gap junction channels between low conductance pairs of neonatal rat ventricular myocytes are reported to exhibit Vj-dependent behavior. In this study, the dependence of macroscopic gap junctional conductance (gj) on transjunctional voltage was quantitatively examined in paired 3-d neonatal hamster ventricular myocytes using the double whole-cell patch-clamp technique. Immunolocalization with a site-specific antiserum directed against amino acids 252-271 of rat connexin43, a 43-kD gap junction protein as predicted from its cDNA sequence, specifically stained zones of contact between cultured myocytes. Instantaneous current-voltage (Ij-Vj) relationships of neonatal hamster myocyte pairs were linear over the entire voltage range examined (0 less than or equal to Vj less than or equal to +/- 100 mV). However, the steady-state Ij-Vj relationship was nonlinear for Vj greater than +/- 50 mV. Both inactivation and recovery processes followed single exponential time courses (tau inactivation = 100-1,000 ms, tau recovery approximately equal to 300 ms). However, Ij recovered rapidly upon polarity reversal. The normalized steady-state junctional conductance-voltage relationship (Gss-Vj) was a bell-shaped curve that could be adequately described by a two-state Boltzmann equation with a minimum Gj of 0.32-0.34, a half-inactivation voltage of -69 and +61 mV and an effective valence of 2.4-2.8. Recordings of gap junction channel currents (ij) yielded linear ij-Vj relationships with slope conductances of approximately 20-30 and 45-50 pS. A kinetic model, based on the Boltzmann relationship and the polarity reversal data, suggests that the opening (alpha) and closing (beta) rate constants have nearly identical voltage sensitivities with a Vo of +/- 62 mV. The data presented in this study are not consistent with the contingent gating scheme (for two identical gates in series) proposed for other more Vj-dependent gap junctions and alternatively suggest that each gate responds to the applied Vj independently of the state (open or closed) of the other gate.  相似文献   

2.
It was the aim of this study to characterize the spread of activation at the cellular level in cardiac tissue during conduction slowing, a key element of reentrant arrhythmias; therefore, activation patterns were assessed at high spatiotemporal resolution in narrow (70 to 80 microm) and wide (230 to 270 microm) linear strands of cultured neonatal rat ventricular myocytes, using multiple site optical recording of transmembrane voltage. Slow conduction was induced by graded elevation of [K+]o, by applying tetrodotoxin, or by exposing the preparations to the gap junctional uncouplers palmitoleic acid or 1-octanol. The main findings of the study are 4-fold: (1) gap junctional uncoupling reduced conduction velocity (range, 37 to 47 cm/s under control conditions) to a substantially larger extent before block (相似文献   

3.
The hepatocytes in the mature normal liver are tightly coupled through gap junctions, except during compensatory hyperplasia (regeneration) after partial hepatectomy when the gap junctions become down-regulated. The significance of this down-regulation has been a long-standing enigma. The present study of hepatocytes in primary culture and in the regenerating liver aimed at defining the relationship, if any, between hepatocyte gap junctional communication and proliferation. Gap junctional down-regulation in the regenerating liver appeared to be a specific phenomenon because desmosomes and the surface contact area between neighboring hepatocytes remained constant. All agents and conditions (dexamethasone in vivo; dexamethasone, cyclic adenosine monophosphate, serum, and high cell density in vitro) delaying gap junctional down-regulation also increased the lag before the cells reached competence to enter S phase. This raised the possibility that hepatocyte DNA replication was inhibited through preservation of gap junctions. However, we disproved this assumption by showing that the DNA replication (more specifically the G1/S transition rate constant) was inhibited even in hepatocytes completely devoid of gap junctional communication. The teleological advantage of linking gap junctional down-regulation to hepatocyte G1 progression therefore may not be to trigger DNA replication but to ensure that proliferating hepatocytes and hepatocytes responsible for liver-specific metabolic functions maintain separate pools of metabolites and signaling molecules.  相似文献   

4.
5.
In intestinal inflammation, inflammatory cells infiltrate the submucosa and are found juxtaposed to intestinal epithelial cell (IEC) basolateral membranes and may directly regulate IEC function. In this study we determined whether macrophage (M phi), P388D1 and J774A.1, are coupled by gap junctions to IEC lines, Mode-K and IEC6. Using flow cytometric analysis, we show bi-directional transfer of the fluorescent dye, calcein (700 Da) between IEC and M phi resulting in a 3.5-20-fold increase in recipient cell fluorescence. Homocellular and heterocellular dye transfer between M phi and/or IEC was detected in cocultures of P388D1, J774A.1, Mode-K, IEC6 and CMT93. However, transfer between P388D1 and Mode-K was asymmetrical in that transfer from P388D1 to Mode-K was always more efficient than transfer from Mode-K to P388D1. Dye transfer was strictly dependent on IEC-M phi adhesion which in turn was dependent on the polarity of IEC adhesion molecule expression. Both calcein dye transfer and adhesion were inhibited by the addition of heptanol to cocultures. Furthermore we demonstrate both IEC homocellular, and M phi-IEC heterocellular propagation of calcium waves in response to mechanical stimulation, typical of gap junctional communication. Finally, areas of close membrane apposition were seen in electron micrographs of IEC-M phi cocultures, suggestive of gap junction formation. These data indicate that IEC and M phi are coupled by gap junctions suggesting that gap junctional communication may provide a means by which inflammatory cells might regulate IEC function.  相似文献   

6.
Activation of cardiac muscle is mediated by the His-Purkinje system, a discrete pathway containing fast-conducting cells (Purkinje fibers) which coordinate the spread of excitation from the atrioventricular node (AV node) to ventricular myocardium [1]. Although pathologies of this specialized conduction system are common in humans, especially among the elderly [2], their molecular bases have not been defined. Gap junctions are present at appositions between Purkinje fibers and could provide a mechanism for propagating impulses between these cells [3]. Studies of the expression of connexins - the family of proteins from which gap junctions are formed - reveal that connexin40 (Cx40) is prominent in the conduction system [4]. In order to study the role of gap junction communication in cardiac conduction, we generated mice that lack Cx40. Using electrocardiographic analysis, we show that Cx40 null mice have cardiac conduction abnormalities characteristic of first-degree atrioventricular block with associated bundle branch block. Thus, gap junctions are essential for the rapid conduction of impulses in the His-Purkinje system.  相似文献   

7.
PURPOSE: To report the management of junctional ectopic tachycardia after cardiac surgery in an infant. Postoperatively, the patient suffered profound cardiac decompensation secondary to the accelerated rhythm and required extracorporeal membrane oxygenation (ECMO) for haemodynamic support. CLINICAL FEATURES: A 14-day-old, 3.5 kg boy exhibited junctional ectopic tachycardia after cardiopulmonary bypass. Left atrial pressure was 25-28 mmHg. No impact on the tachycardia was seen after rapid overdrive atrial pacing or after 20 micrograms fentanyl i.v., 45 micrograms digitalis, 100 mg magnesium or procainamide (loading dose 15 mg, then 30 mg.kg-1.min-1). Active cooling decreased the nasopharyngeal temperature to 35.2 degrees C, when the heart rate decreased below 180 bpm with a left atrial pressure of 8-10 mmHg. Dopamine (2 micrograms.kg-1.min-1) and dobutamine (5 micrograms.kg-1.min-1) were added to improve the cardiac output. Sodium nitroprusside (0.25 to 1 microgram.kg-1.min) maintained the systolic pressure < 100 mmHg. On arrival in ICU, heart rate increased to 200 bpm. The patient received cardiac massage for severe hypotension 75 min after surgery. Emergency ECMO was instituted for circulatory support. Procainamide, digoxin, dopamine, dobutamine, sodium nitroprusside and hypothermia were continued. Sinus rhythm resumed on the first postoperative day, but procainamide and induced hypothermia at 34 degrees C were maintained for 36 hr after normalization of the rhythm to prevent recurrence of the tachycardia. Total duration of ECMO was three and a half days. Recovery was uneventful. CONCLUSION: The use of ECMO, as a first line of defence, is suitable for the emergency support of patients with JET because of the ease of support of circulation and precise control of hypothermia.  相似文献   

8.
BACKGROUND: Previous electrophysiological studies in patients with typical atrial flutter suggested that the slow conduction zone might be located in the low right atrial isthmus, which is a path formed by orifice of inferior vena cava, eustachian valve/ridge, coronary sinus ostium, and tricuspid annulus. The conduction characteristics during atrial pacing and responses to antiarrhythmic drugs of this anatomic isthmus were unknown. METHODS AND RESULTS: Forty-four patients, 20 patients with paroxysmal supraventricular tachycardia (group 1) and 24 patients with clinically documented paroxysmal typical atrial flutter (group 2), were studied. A 20-pole halo catheter was situated around the tricuspid annulus. Incremental pacing from the low right atrium and coronary sinus ostium was performed to measure the conduction time and velocity along the isthmus and lateral wall in the baseline state and after intravenous infusion of procainamide or sotalol. In both groups, conduction velocity in the isthmus during incremental pacing was significantly lower than that in the lateral wall before and after infusion of antiarrhythmic drugs. Furthermore, gradual conduction delay with unidirectional block in the isthmus was relevant to initiation of typical atrial flutter. Compared with group 1, group 2 had a lower conduction velocity in the isthmus and shorter right atrial refractory period. Procainamide significantly decreased the conduction velocity, but sotalol did not change it. In contrast, sotalol significantly prolonged the atrial refractory period with a higher extent than procainamide. After infusion of procainamide, the increase of conduction time in the isthmus accounted for 52+/-19% of the increase in flutter cycle length, and 5 of 12 patients (42%) had spontaneous termination of typical flutter. After infusion of sotalol, typical flutter was induced in only 6 of 12 patients (50%) without significant prolongation of flutter cycle length. CONCLUSIONS: The low right atrial isthmus with rate-dependent slow conduction properties is critical to initiation of typical human atrial flutter. It may be the potentially pharmacological target of antiarrhythmic drugs in the future.  相似文献   

9.
We investigated whether the growth state of NRK cells (proliferating or quiescent by serum deprivation) affected the ability of oncogenic Ki-ras p21 and the protein kinase C activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), to alter gap junctional communication. We evaluated gap junctional permeance by rate analysis of the transfer of a fluorescent dye, Lucifer Yellow, between cell pairs. We found that while the gap junctions of proliferating NRK cells were unresponsive to both TPA and to Ki-ras p21, junctional communication in quiescent cells was significantly inhibited by brief exposures to 100 ng/ml TPA. Furthermore, activity of Ki-ras p21 2 h prior to TPA exposure enhanced the inhibitory effect of TPA in quiescent cells. Junctional sensitivity to TPA was transient, with inhibition of junctional communication detected at 10 min and refractory after 60 min of continuous exposure. The suppression of junctional communication by TPA was completely prevented if the oncogenic p21 had been active for a longer period of time (48 h). The application of a phorbol ester derivative (4 alpha-PDD), which does not activate protein kinase C, did not affect the ability of quiescent cells to communicate. From these results we conclude that there is a cell-state dependence of junctional sensitivity to TPA in NRK cells and that ras p21 activity potentiates the junctional response to TPA. One interesting possibility is that this involved a cell-cycle effect.  相似文献   

10.
11.
BACKGROUND: The regional wall motion impairment and predisposition to arrhythmias in human ventricular hibernation may plausibly result from abnormal intercellular propagation of the depolarizing wave front. This study investigated the hypothesis that altered patterns of expression of connexin43, the principal gap junctional protein responsible for passive conduction of the cardiac action potential, contribute to the pathogenesis of hibernation. METHODS AND RESULTS: Patients with poor ventricular function and severe coronary artery disease underwent thallium scanning and MRI to predict regions of normally perfused, reversibly ischemic, or hibernating myocardium. Twenty-one patients went on to coronary artery bypass graft surgery, during which biopsies representative of each of the above classes were taken. Hibernation was confirmed by improvement in segmental wall motion at reassessment 6 months after surgery. Connexin43 was studied by quantitative immunoconfocal laser scanning microscopy and PC image software. Analysis of en face projection views of intercalated disks revealed a significant reduction in relative connexin43 content per unit area in reversibly ischemic (76.7+/-34.6%, P<.001) and hibernating (67.4+/-24.3%, P<.001) tissue compared with normal (100+/-30.3%); ANOVA P<.001. The hibernating regions were further characterized by loss of the larger gap junctions normally seen at the disk periphery, reflected by a significant reduction in mean junctional plaque size in the hibernating tissues (69.5+/-20.8%) compared with reversibly ischemic (87.4+/-31.2%, P=.012) and normal (100+/-31.5%, P<.001) segments; ANOVA P<.001. CONCLUSIONS: These results indicate progressive reduction and disruption of connexin43 gap junctions in reversible ischemia and hibernation. Abnormal impulse propagation resulting from such changes may contribute to the electromechanical dysfunction associated with hibernation.  相似文献   

12.
OBJECTIVE: The electrophysiologic properties of gap junctions between human myometrial smooth muscle cells were studied. STUDY DESIGN: Double whole-cell patch clamp recordings were made on pairs of cells from primary cultures of myometrial cells from women undergoing cesarean section. Macroscopic gap junction currents were measured as the change in current in a cell held at a constant voltage while the other member of a pair was subjected to a test pulse of voltage. The blockade by halothane was examined. RESULTS: Mean junctional conductance between pairs of cells was 23 +/- 14 nanosiemens (n = 57). Instantaneous gap junction conductance was constant as a function of transjunctional voltage. For transjunctional voltages of < or = 50 mV, currents were constant during a 5-second test pulse. For larger voltages, however, the currents showed a time-dependent decay. The currents were blocked completely and reversibly with 3.5 mmol/L halothane. Single-channel conductances of 60 picosiemens and 15 picosiemens were observed. CONCLUSION: This first study of gap junction currents in human myometrial cells confirms that connexin43 is the major functional constituent. Functional studies of myometrial gap junction channels may suggest new strategies for controlling uterine contractility.  相似文献   

13.
Direct electrical coupling between neurons can be the result of both electrotonic current transfer through gap junctions and extracellular fields. Intracellular recordings from CA1 pyramidal neurons of rat hippocampal slices showed two different types of small-amplitude coupling potentials: short-duration (5 ms) biphasic spikelets, which resembled differentiated action potentials and long-duration (>20 ms) monophasic potentials. A three-dimensional morphological model of a pyramidal cell was employed to determine the extracellular field produced by a neuron and its effect on a nearby neuron resulting from both gap junctional and electric field coupling. Computations were performed with a novel formulation of the boundary element method that employs triangular elements to discretize the soma and cylindrical elements to discretize the dendrites. An analytic formula was derived to aid in computations involving cylindrical elements. Simulation results were compared with biological recordings of intracellular potentials and spikelets. Field effects produced waveforms resembling spikelets although of smaller magnitude than those recorded in vitro. Gap junctional electrotonic connections produced waveforms resembling small-amplitude excitatory postsynaptic potentials. Intracellular electrode measurements were found inadequate for ascertaining membrane events because of externally applied electric fields. The transmembrane voltage induced by the electric field was highly spatially dependent in polarity and wave shape, as well as being an order of magnitude larger than activity measured at the electrode. Membrane voltages because of electrotonic current injection across gap junctions were essentially constant over the cell and were accurately depicted by the electrode. The effects of several parameters were investigated: 1) decreasing the ratio of intra to extracellular conductivity reduced the field effects; 2) the tree structure had a major impact on the intracellular potential; 3) placing the gap junction in the dendrites introduced a time delay in the gap junctional mediated electrotonic potential, as well as deceasing the potential recorded by the somatic electrode; and 4) field effects decayed to one-half of their maximum strength at a cell separation of approximately 20 micron. Results indicate that the in vitro measured spikelets are unlikely to be mediated by gap junctions and that a spikelet produced by the electric field of a single source cell has the same waveshape as the measured spikelet but with a much smaller amplitude. It is hypothesized that spikelets are a manifestation of the simultaneous electric field effects from several local cells whose action potential firing is synchronized.  相似文献   

14.
BACKGROUND: Conduction block may be both antiarrhythmic and proarrhythmic. Drug-induced postrepolarization refractoriness (PRR) may prevent premature excitation and tachyarrhythmia induction. The effects of propafenone and procainamide on these parameters, and their antiarrhythmic or proarrhythmic consequences, were investigated. METHODS AND RESULTS: In 11 isolated Langendorff-perfused rabbit hearts, monophasic action potentials (MAPs) were recorded simultaneously from six to seven different right and left ventricular sites, along with a volume-conducted ECG. All recordings were used to discern ventricular tachycardia (VT) or ventricular fibrillation (VF) induced by repetitive extrastimulation (S2-S5) or 10-second burst stimulation at 25 to 200 Hz at baseline and after addition of procainamide (20 micromol/L) or propafenone (1 micromol/L) to the perfusate. MAPs were analyzed for action potential duration at 90% repolarization (APD90), conduction times (CT) between the pacing site and the other MAPs, and PRR (effective refractory period-APD90=PRR) and related to the induction of VT or VF. During steady-state pacing, procainamide and propafenone prolonged APD90 by 12% and 14%, respectively. Procainamide slowed mean CT by 40% during S2-S5 pacing, whereas propafenone slowed mean CT by up to 400% (P<0.001 versus baseline and procainamide). Wavelength was not changed significantly by procainamide but was shortened fourfold by propafenone at S5. Both drugs produced PRR, which was associated with a 70% decrease in VF inducibility with procainamide and elimination of VF with propafenone. Despite this protection from VF, monomorphic VT was induced with propafenone in 57% of burst stimulations. CONCLUSIONS: Drug-induced PRR protects against VF induction. Propafenone promotes slow monomorphic VT, probably by use-dependent conduction slowing and wavelength shortening.  相似文献   

15.
BACKGROUND: Astrocytes represent a major nonneuronal cell population in the central nervous system (CNS) and are actively involved in several brain functions. These cells are coupled by gap junctions (GJ) into a syncytial-like network resulting in cellular communication through ionic and metabolic exchange between adjacent astrocytes. Whether anesthetics affect astrocyte function is not known. In the present study, the effects of general anesthetics on GJ permeability were investigated in primary cultures of mouse striatal astrocytes. METHODS: Junctional permeability was determined by using the fluorescent probe Lucifer yellow and the scrape loading/dye transfer technique. Confluent cells were preincubated 5 min with various concentrations of anesthetic agents and GJ permeability was estimated by measuring the area occupied by the dye from digitalized images taken 8 min after cell loading. RESULTS: Of the intravenous anesthetics tested, only propofol (P: 10(-4) M, P < 0.01 and 10(-5) M, P < 0.05) and etomidate (ET: 10(-4) M, P < 0.05, but not 10(-5) M) induced a significant reduction of GJ permeability. In contrast, diazepam (10(-5) M), morphine (10(-4) M), ketamine (10(-4) M), thiopental (10(-4) M), and clonidine (10(-7) M) did not affect junctional permeability. In addition, the halogenated anesthetics halothane, enflurane, and isoflurane induced a dose-dependent closure of GJ. For halothane, enflurane, and isoflurane, the maximum effect was achieved with a 10(-4) M, 1.6 x 10(-3) M, and 10(-3) M anesthetic concentration, respectively. Removal of volatile anesthetics resulted in the restoration of the control fluorescence area between 15 and 45 min. The time course of recovery of GJ permeability was examined more precisely for shorter periods of halothane administration (5 min, 1 mM). Under these conditions, the rate of dye spread returned to control values following anesthetic washout, while, during the same period of time, complete uncoupling of GJ was still observed in the presence of a 1 mM halothane concentration. CONCLUSIONS: These results indicate that general anesthetics differentially affect GJ permeability in cultured astrocytes. This uncoupling effect (closure of gap junctions) may contribute to the mechanisms of action of some anesthetic agents (primarily volatile anesthetics) at the level of the CNS by altering astrocyte communication.  相似文献   

16.
To test whether the gap junction protein connexin 43 (Cx43) is associated with germ cell differentiation and with the Sertoli cell junctional blood barrier, we recorded the temporal changes in its distribution before birth, through the neonatal period, puberty, and adulthood in guinea pig, and throughout the annual seasonal reproductive cycle in the mink. We used the immunoperoxidase labeling technique on Bouin's perfused-fixed testes and with site-specific polyclonal affinity-purified antibodies against Cx43. Cx43 was localized between Leydig cells in fetal guinea pig testis. In this species, after birth, the appearance of Cx43 concurred with the onset of spermatogenesis. In the seminiferous epithelium, the distribution of Cx43 coincided with the gap junctions of the Sertoli cell junctional blood barrier. In guinea pig and mink, the distribution of the protein in the tubules changed in accordance with the germ cell differentiation in a stage-dependent manner and with the modulation, i.e., the assembly and disassembly of the junctional barrier accompanying the translocation of spermatocytes into the lumenal compartment. In the mink, the reaction product persisted during testicular regression but showed a similar distribution from one tubule to the next. In this paper, we documented the existence of a temporal correlation between the appearance of the gap junction protein Cx43 and both the germ cell differentiation and the modulation in the junctional barrier between Sertoli cells. The paper also discusses the possibility that cell-to-cell communications, generally attributed to gap junctions, may help changes in the barrier to take place in coordination with spermatogenesis.  相似文献   

17.
Intercellular junctions in the mesothelium of the visceral (mesentery and omentum), and parietal (diaphragm, pre-aortic, and iliac region) peritoneum were examined in rats and mice by using freeze-cleaved preparations. In addition to usual intercellular junctions (cell body junctions), special junctions are found between cell processes and the surface of the neighboring cell (cell process junctions). Cell body junctions are provided with tight junctions and communicating (gap) junctions. The former consist of one to two junctional strands which show a characteristic staggered arrangement, and focal discontinuities. In cell process junctions, the strands form loops or appear as short, free-ending elements; their polymorphism suggests considerable lability, probably in connection with their assembly and disassembly. The existence of free-ending strands indicates that such structures can be used as attachment devices without being concomitantly involved in the formation of occluding zonules. In both types of junctions, the strands can be resolved into bars, approximately 80- 100nm long, frequently provided with terminal enlargements and intercalated particles which occur singly or in small clusters. These particles are morphologically similar to those present in communicating (gap) junctions. The mesothelium is also provided with isolate composite macular junctions. Throughout the mesothelium, the cleavage plane follows the outer contour of junctional strands and particles, suggesting that strand-to-strand interactions in the apposed membranes are weaker than interactions between each strand and underlying cytoplasmic structures. In their general geometry and cleavage characteristics, the mesothelial junctions resemble the junctions found in the venular endothelium.  相似文献   

18.
Gap junctions are specialized membrane structures that are involved in the normal functioning of numerous mammalian tissues and implicated in several human disease processes. This mini-review focuses on the regulation of gap junctions through phosphorylation of connexin43 induced by the v-Src or epidermal growth factor receptor tyrosine kinases. These tyrosine kinases markedly disrupt gap junctional communication in mammalian cells. here, we describe work correlating the alteration of connexin43 function with the ability of the v-Src tyrosine kinase to phosphorylate connexin43 directly on two distinct tyrosine sites in mammalian cells (Y247 and Y265). We also present evidence that proline-rich regions and phosphotyrosine sites of connexin43 may mediate interactions with the SH3 and SH2 domains of v-Src. In contrast to v-Src, the activated epidermal growth factor receptor acts indirectly through activated MAP kinase which may stimulate phosphorylation of connexin43 exclusively on serine. This phosphorylation event is complex because MAP kinase phosphorylates three serine sites in connexin43 (S255, S279, and S282). These findings suggest novel interactions between connexin43, the v-Src tyrosine kinase, and activated MAP kinase that set the stage for future investigations into the regulation of gap junctions by protein phosphorylation.  相似文献   

19.
It has been demonstrated that the gap junctions of the supporting cells of the organ of Corti are controlled by H+ and Ca2+. Inside these cells there is a tubular structure. It is supposed that this network is endoplasmic reticulum. Calcium release from inside the cells, and the effect of calcium on the gap junctions of these cells, were investigated under whole cell clamping application of ryanodine and caffeine. Membrane capacitance and membrane resistance were calculated, with corrections for changes in whole cell parameters. Ryanodine-treated cells (1 microM-10 mM), caffeine-treated cells (5 mM 500 nM) and A23187-treated cells were uncoupled at their gap junctions. Therefore, Ca2+ plays a role in the uncoupling of the gap junctions in supporting cells of the organ of Corti from inside the cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号