首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A full-scale wastewater treatment plant where municipal and winery wastewaters were co-treated was studied for five years. The experimental results showed that suspended solids, COD, nitrogen and phosphorous were effectively removed both during the treatment of municipal wastewater and the cotreatment of municipal and winery wastewater. The sludge production increase from 4 tons to 5.5 tons per day during the harvesting and wine making period. In any case the specific sludge production was 0.2 kgMLVSS per kgCOD(removed) despite the organic loading increasing. About 70% of the COD was removed through respiration. Also the energy demand increased from 6,000 to 7,000 kWh per day. The estimated costs for the treatment of the winery wastewater was 0.2-0.3 Euros per m3 of treated wastewater. With reference to the process efficiency, the nitrogen removal was just 20%. The co-treatment of municipal and winery wastewater in conventional activated sludge processes can be a feasible solution for the treatment of these streams at relatively low costs.  相似文献   

2.
The treatment of winery wastewater was performed at full-scale applying a two-stage fixed bed biofilm reactor (FBBR) system for the discharge in the sewerage. The results of the first year of operation at the full-scale plant are presented. Values of removed organic loads and effluent concentrations were interpreted on the basis of the COD fractionation of influent wastewater assessed through respirometric tests. The average removal efficiency of total COD was 91 %. It was not possible to reach an higher efficiency because of the unbiodegradable soluble fraction of COD (about 10% of total COD on average during the whole year), that cannot be removed by biological process or settling. Due to the high empty space offered by the plastic carriers, FBBRs did not require backwashing during the seasonal operationing period of the plant (September-March). In comparison with other treatment systems the FBBR configuration allows one to ensure a simple management, to obtain high efficiency also in the case of higher fluctuations of flow and loads and to guarantee a good settleability of the sludge, without bulking problems.  相似文献   

3.
Taking account of the high specificity of the organic load of winery effluents, a new biophysical treatment using the stripping of ethanol combined with a final concentration by evaporation has been studied. Two options are proposed: full treatment and pre-treatment. The study of the composition of winery wastewater has shown the large, dominant part of ethanol in the organic load (75 to 99% of the COD). According to a linear correlation between COD and ethanol concentration, the determination of ethanol concentration can be used to estimate the organic load of winery wastewater. Full treatment by stripping and concentration at a pilot plant allows the separation of the wastewater into highly purified water (COD elimination > 99%), a concentrated alcoholic solution usable as bio-fuel and a concentrated by-product. Stripping alone represents an advantageous pre-treatment of winery wastewater. The purification rate reaches 78 to 85% and ethanol is recovered. The process facilitates discharge into a sewage system in view of treatment with domestic effluents and can also improve the efficiency of overloaded or old purification plants. The economical approach of this method demonstrates its competitiveness in comparison with biological treatments: low energy consumed, no sludge.  相似文献   

4.
The efficiency of ozone as a pre- and post-treatment to UASB treatment was investigated, followed by a study into UASB reactor performance with ozonated wastewater as substrate. Combinations of pre- and/or post-ozonation with UASB treatment gave better results than ozonation or UASB alone and COD reductions of 53.0-98.9% were achieved for treatment of canning and winery wastewaters. A UASB reactor was fed with pre-ozonated cannery wastewater for over 70 d. COD removal improved from between 58.8 and 64.4% to between 85.3 and 91.8% after pre-ozonated substrate feed commenced. Subsequent increases in organic loading rate (OLR) from 2.4 to 3.4 kgCOD m(-3) x d(-1) did not affect reactor performance. By including a final post-ozonation treatment to this UASB effluent a total COD reduction of 99.2% was achieved.  相似文献   

5.
Pumped flow biofilm reactors (PFBR) for treating municipal wastewater   总被引:1,自引:0,他引:1  
A novel laboratory bench-scale sequencing batch biofilm reactor (SBBR) system was developed for the treatment of synthetic domestic strength wastewater, comprising two side-by-side 18 l reactor tanks, each containing a plastic biofilm media module. Aerobic and anoxic conditions in the biofilms were effected by intermittent alternate pumping of wastewater between the two reactors. With a media surface area loading rate of 4.2 g chemical oxygen demand (COD)/m2.d, the average influent COD, total nitrogen (TN) and ammonium-nitrogen (NH4-N) concentrations of 1021 mg/l, 97 mg/l and 54 mg/l, respectively, reduced to average effluent concentrations of 72 mg COD/l, 17.8 mg TN/l, and 5.5 mg NH4-N /l. Using a similar alternating biofilm exposure arrangement, a 16 person equivalent pilot (PE) plant was constructed at a local village treatment works to remove organic carbon from highly variable settled municipal wastewater and comprised two reactors, one positioned above the other, each containing a module of cross-flow plastic media with a surface area of 100 m2. Two different pumping sequences (PS) in the aerobic phase were examined where the average influent COD concentrations were 220 and 237 mg/l for PS1 and PS2, respectively, and the final average effluent COD was consistently less than 125 mg/l--the European Urban Wastewater Treatment Directive limit--with the best performance occurring in PS1. Nitrification was evident during both PS1 and PS2 studies. A 300 PE package treatment plant was designed based on the bench-scale and pilot-scale studies, located at a local wastewater treatment works and treated municipal influent with average COD, suspended solids (SS) and TN concentrations of 295, 183 and 15 mg/l, respectively resulting in average effluent concentrations of 67 mg COD/l, 17 mg SS/l and 9 mg TN/l. The SBBR systems performed well, and were simple to construct and operate.  相似文献   

6.
The aim of this study was to evaluate the feasibility of the re-use of the winery wastewater to enhance the biological nutrient removal (BNR) process. In batch experiments it was observed that the addition of winery wastewater mainly enhanced the nitrogen removal process because of the high denitrification potential (DNP), of about 130 mg N/g COD, of the contained substrates. This value is very similar to that obtained by using pure organic substrates such as acetate. The addition of winery wastewater did not significantly affect either phosphorus or COD removal processes. Based on the experimental results obtained, the optimum dosage to remove each mg of N-NO3 was determined, being a value of 6.7 mg COD/mg N-NO3. Because of the good properties of the winery wastewater to enhance the nitrogen removal, the viability of its continuous addition in an activated sludge pilot-scale plant for BNR was studied. Dosing the winery wastewater to the pilot plant a significant increase in the nitrogen removal was detected, from 58 to 75%. The COD removal was slightly increased, from 89 to 95%, and the phosphorus removal remained constant.  相似文献   

7.
The aim of this work was to evaluate the performance of a pilot-scale upflow anaerobic sludge blanket (UASB) reactor during the treatment of cereal-processing industry wastewater under low-temperature conditions (17 degrees C) for more than 300 days. The applied organic loading rate (OLR(appl)) was gradually increased from 4 to 6 and 8 kg COD(sol)/m3d by increasing the influent soluble chemical oxygen demand (COD(sol)), while keeping the hydraulic retention time constant (5.2 h). The removal efficiency was high (82 to 92%) and slightly decreased after increasing the influent COD(sol) and the OLR(appl). The highest removed organic loading rate (OLR(rem)) was reached when the UASB reactor was operated at 8 kg COD(sol)/m3d and it was two times higher than that obtained for an OLR(appl) of 4 kg COD(sol)/m3d. Some disturbances were observed during the experimentation. The formation of biogas pockets in the sludge bed significantly complicated the biogas production quantification, but did not affect the reactor performance. The volatile fatty acids in the effluent were low, but increased as the OLR(appl) increased, which caused an increment of the effluent COD(sol). Anaerobic treatment at low temperature was a good option for the biological pre-treatment of cereal processing industry wastewater.  相似文献   

8.
Evaluation of wastewater characterization methods.   总被引:1,自引:0,他引:1  
Wastewater contains various organic components with different physical and biochemical characteristics. ASM No. 1 distinguishes two categories of biodegradable organic matter in wastewater, rapidly and slowly biodegradable. In general there are two methods for wastewater characterization: based on filtration in combination with a long-term BOD test or based on a respirogram. By comparing both approaches, we showed that in wastewater three categories of organic compounds with different biodegradation rates can be distinguished. These categories are referred to as readily biodegradable, rapidly hydrolysable and slowly hydrolysable organic matter. The total biodegradable COD can be found from a long-term BOD-test combined with a curve-fit and the readily biodegradable and rapidly hydrolysable from a respirogram. The slowly hydrolysable is the difference between total biodegradable COD and the sum of readily biodegradable and rapidly hydrolysable COD. Simulation with characterization based on filtration for a pre-anoxic reactor with a certain N-removal compared with the N-removal of the same plant with wastewater according to the modified characterization shows different results of each wastewater, especially with regard to the effluent nitrate concentration.  相似文献   

9.
Overcapacities of anaerobic digesters at municipal WWTPs are frequently used for the treatment of organic wastes in order to increase the biogas production. However, "co-digestion" of organic wastes leads to additional nitrogen loading and to additional loads of non-biodegradable COD. The effects of (co-) digestion of organic wastes from agro-industries (slaughterhouses, dairies and leather industry) on the wastewater cycle have been evaluated in full-scale investigations at Leoben WWTP with a capacity of 90,000 pe where the methane production was increased from 700 to more than 1700 Nm3 CH4 per day. For this evaluation, mass balances for COD and nitrogen have been applied to estimate the fluxes of these substances. Application of this method is described in detail. As the additional loadings, it was found that related to methane production less nitrogen is released from the organic wastes than from the waste sludge. While the ammonia nitrogen load in the effluent from sludge digestion was about 100 g NH4-N per Nm3 of CH4 produced, in the effluent from the digestion of organic wastes only 70 g NH4-N/Nm3 CH4 were found. The decrease in the COD removal efficiency after digestion of the organic wastes started was not regarded as significant enough to be seen as a consequence of the treatment of external substrate.  相似文献   

10.
Characterisation of grey water reveals a source water that is similar in organic strength to a low-medium strength municipal sewage influent but with physical and biodegradability characteristics similar to a tertiary treated effluent. The characteristics of the water suggest biological processes are the most suitable unit processes for treating grey water. The highly variable nature of the source requires that selected technologies must be inherently robust in their operation. One potential area of concern is the high COD/BOD ratio and nutrient deficiency in terms of both macro and micro nutrients which grey water exhibits potentially retard the efficacy of biological processes.  相似文献   

11.
Wine production is seasonal, and thus the wastewater flow and its chemical oxygen demand (COD) concentrations greatly vary during the vintage and non-vintage periods, as well as being dependant on the winemaking technologies used, e.g. red, white or special wines production. Due to this seasonal high variability in terms of organic matter load, the use of membrane biological reactors (MBR) could be suitable for the treatment of such wastewaters. MBR offers several benefits, such as rapid start up, good effluent quality, low footprint area, absence of voluminous secondary settler and its operation is not affected by the settling properties of the sludge. A pilot scale hollow fibre MBR system of 220 L was fed by adequately diluting white wine with tap water, simulating wastewaters generated in wineries. The COD in the influent ranged between 1,000 and 4,000 mg/L. In less than 10 days after the start up, the system showed a good COD removal efficiency. The COD elimination percentage was always higher than 97% regardless of the organic loading rate (OLR) applied (0.5-2.2 kg COD/m3 d), with COD concentrations in the effluent ranging between 20 and 100 mg/L. Although the biomass concentration in the reactor increased from 0.5 to 8.6 g VSS/L, the suspended solids concentration in the effluent was negligible. Apparent biomass yield was estimated in 0.14 g VSS/g COD.  相似文献   

12.
介绍4种测定起始惰性溶解有机物的方法,比较了各种方法的优缺点及适用情况。利用方法四对印染废水起始惰性溶解有机物的含量进行了测定,结果表明该种废水单纯应用生物法处理难以满足排放标准的要求,必须辅以物化处理系统。起始惰性溶解有机物的测定是应用活性污泥数学模型模拟废水生物处理过程的基础。  相似文献   

13.
The practical applicability of computer simulation of aerobic biological treatment systems for winery effluents was investigated to enhance traditional on-site evaluation of new processes. As there is no existing modelling tool for pure winery effluent, a model widely used for municipal activated sludge (ASM1) was used. The calibration and validation steps were performed on extended on-site data. The global soluble COD, DO and OUR were properly reproduced. Possible causes for the remaining discrepancies between measured and simulated data were identified and suggestions for improvement directions were made to adapt ASM1 to winery effluents. The calibrated model was then used to simulate scenarios to evaluate the plant behaviour for different operation or design. In combination with on-site observations, it allowed us to establish useful and justified improvement suggestions for aeration tank and aeration device design as well as feed, draw and aeration operation.  相似文献   

14.
The paper reports the results of an investigation carried out at lab scale to assess the effectiveness of an innovative technology (SUPERBIO) for treating municipal and/or industrial wastewater. When this technology was applied for treating municipal wastewater, the results showed that even at maximum organic load (i.e. 7 kg COD m(-3) d(-1)), the COD in the treated effluent was lower than 50 mg L(-1). In addition, both ammonia and TKN removal efficiencies resulted in higher than 87% up to an organic load of 5.7 kg COD m(-3) d(-1) corresponding to a nitrogen load of 0.8 kg TKN m(-3) d(-1). Very satisfactory process performances also resulted during tannery wastewater treatment, when a chemical oxidation step (i.e. ozonation) was inserted in the treatment cycle of SUPERBIO. In such an instance, at organic and nitrogen loadings of 3 kgCOD m(-3) d(-1) and 0.20 kg N m(-3) d(-1), COD, NH4+ -N and TSS average removals were 96, 99 and 98%, respectively. Finally, during the whole experimentation, SUPERBIO was always characterised by a very low sludge production. Such a result was ascribed mainly to the characteristics of biomass that grew in the form of very dense granules (i.e. 130 gVSS L(Biomass)(-1) allowing a biomass concentration as high as 50-60 gTSS l(bed)(-1) to be achieved.  相似文献   

15.
The fate of effluent organic matter (EfOM) during groundwater recharge was investigated by studying the removal behavior of four bulk organic carbon fractions isolated from a secondary effluent: Hydrophilic organic matter (HPI), hydrophobic acids (HPO-A), colloidal organic matter (OM), and soluble microbial products (SMPs). Short-term removal of the bulk organic fractions during soil infiltration was simulated in biologically active soil columns. Results revealed that the four organic fractions showed a significantly different behavior with respect to biological removal. HPI and colloidal OM were prone to biological removal during initial soil infiltration (0-30 cm) and supported soil microbial biomass growth in the infiltrative surface. Additionally, colloidal OM was partly removed by physical adsorption or filtration. HPO-A and SMPs reacted recalcitrant towards biological degradation as indicated by low soil biomass activity responses. Adsorbability assessment of the biologically refractory portions of the fractions onto powered activated carbon (PAC) indicated that physical removal is not likely to play a significantly role in further diminishing recalcitrant HPO-A, HPI and SMPs during longer travel times in the subsurface.  相似文献   

16.
以某大型制浆造纸厂废水处理工程为例,介绍了水解酸化—好氧生物处理联合Fenton氧化深度处理工艺在造纸和制浆中段废水处理中的应用。厂内造纸废水量为0.77万~2.91万m3/d,COD为2 150~4 430mg/L,SS为1 316~2 414mg/L,经生化处理后,出水COD和SS平均分别为309mg/L和53mg/L;制浆废水量为0.84万~3.68万m3/d,COD为1 720~4 360mg/L,SS为1 184~1 994mg/L,生化处理出水COD和SS平均分别为370mg/L和56mg/L。两种废水的生化处理出水经Fenton氧化和絮凝沉淀处理后,出水COD为67~98mg/L,SS为21~29mg/L,可达《制浆造纸工业水污染物排放标准》(GB 3544—2008)排放要求。废水处理成本为2.01元/m3,具有良好的经济效益和环境效益。  相似文献   

17.
Chemical pre-treatment of synthetic Procaine Penicillin G (PPG) effluent with ozone (applied dose = 1440 mg/h; treatment duration = 60 min) at pH = 7 was investigated. Successive biological treatability studies were performed with raw, ozonated penicillin formulation effluent and synthetic readily biodegradable substrate as simulated domestic wastewater. The PPG effluent additions were adjusted to constitute approximately 30% of the total COD in the reactor. Ozonation of PPG effluent resulted in practically complete removal of the parent pollutant accompanied by 40% COD abatement. Speaking for the raw PPG effluent, prolonged acclimation periods were necessary to obtain significant COD removal efficiencies. Batch activated sludge treatment experiments and respirometric studies have demonstrated that the selection of true retention time is extremely crucial for having high amount of slowly hydrolysable substrate or complex wastewater, like pharmaceutical effluent. The effect of ozonation time on biological treatability performance of PPG has been evaluated in the study. Pre-ozonation of PPG effluent did not improve its ultimate biodegradability.  相似文献   

18.
采用预处理-加压曝气生物氧化工艺处理香兰素生产废水。反应器在200 kPa压力条件下,COD容积负荷率达5.5~8.0 kg/m3.d,进水COD质量浓度为2 000~2 500 mg/L,反应时间为8~10 h时,处理后的出水COD质量浓度小于100 mg/L,达到污水综合排放一级标准。还对加压曝气生物反应器原理、工艺流程、运行参数、工艺设计等方面进行了介绍。  相似文献   

19.
Twenty-one samples of winery and distillery effluents were collected from different Spanish winery and distillery industries. Electrical conductivity, pH, redox potential, density, organic charge (chemical oxygen demand, biological oxygen demand, total, volatile and suspended solids, oxidisable organic C and polyphenols) and contents of plant nutrients and heavy metals were analysed. The aim of this work was to study the composition of these effluents and to find relationships which would make it possible to use easily determined parameters to estimate their composition. The winery wastewater (WW) and vinasse (V) showed an acidic pH, a high organic load and notable polyphenol, macronutrient, micronutrient and heavy metal contents. Some of these properties are not compatible with agricultural requirements; therefore, conditioning treatment of these liquid wastes is necessary to produce a safe, stable and easily manageable end product. Generally, in both effluent types, significant correlations were found between easily analysable parameters, such as suspended, volatile and total solids, pH, electrical conductivity, density and redox potential, and most of the parameters studied. The linear regression equations obtained permitted an immediate characterisation of the WW and V samples using these parameters.  相似文献   

20.
A shortage of organic substances (COD) may cause problems for biological nutrient removal, that is, lower influent COD concentration leads to lower nutrient removal rates. Biological phosphorus removal and denitrification are reactions in which COD is indispensable. As for biological simultaneous nitrogen and phosphorus removal systems, a competition problem of COD utilisation between polyphosphate accumulating organisms (PAOs) and non-polyphosphate-accumulating denitrifiers is not avoided. From the viewpoint of effective utilisation of limited influent COD, denitrifying phosphorus-removing organisms (DN-PAOs) can be effective. In this study, DN-PAOs activities in modified UCT (pre-denitrification process) and DEPHANOX (post-denitrification process) wastewater treatments were compared. In conclusion, the post-denitrification systems can use influent COD more effectively and have higher nutrient removal efficiencies than the conventional pre-denitrification systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号