首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Culture of preimplantation embryos affects gene expression. The magnitude of the effect on the global pattern of gene expression, however, is not known. We compared global patterns of gene expression in blastocysts cultured from the one-cell stage in either Whitten's medium or KSOM + amino acids (KSOM/AA) with that of blastocysts that developed in vivo, using the Affymetrix MOE430A chip. The analysis revealed that expression of 114 genes was affected after culture in Whitten's medium, whereas only 29 genes were mis-expressed after culture in KSOM/AA. Expression Analysis Systematic Explorer was used to identify biological and molecular processes that are perturbed after culture and indicated that genes involved in protein synthesis, cell proliferation and transporter function were down-regulated after culture in Whitten's medium. A common set of genes involved in transporter function was also down-regulated after culture in KSOM/AA. These results provide insights as to why embryos develop better in KSOM/AA than in Whitten's medium, and highlight the power of microarray analysis to assess global patterns of gene expression.  相似文献   

2.
It has been observed that apoptosis occurs in human blastocysts. In other types of cell, the characteristic morphological changes seen in apoptotic cells are executed by caspases, which are regulated by the BCL-2 family of proteins. This study investigated whether these components of the apoptotic cascade are present throughout human preimplantation development. Developing and arrested two pronucleate embryos at all stages were incubated with a fluorescently tagged caspase inhibitor that binds only to active caspases, fixed, counterstained with 4,6-diamidino-2-phenylindole (DAPI) to assess nuclear morphology and examined using confocal microscopy. Active caspases were detected only after compaction, at the morula and blastocyst stages, and were frequently associated with apoptotic nuclei. Occasional labelling was seen in arrested embryos. Expression of proapoptotic BAX and BAD and anti-apoptotic BCL-2 was examined in single embryos using RT-PCR and immunohistochemistry. BAX and BCL-2 mRNAs were expressed throughout development, whereas BAD mRNA was expressed mainly after compaction. Simultaneous expression of BAX and BCL-2 proteins within individual embryos was confirmed using immunohistochemistry. The onset of caspase activity and BAD expression after compaction correlates with the previously reported appearance of apoptotic nuclei. As in other types of cell, human embryos express common molecular components of the apoptotic cascade, although apoptosis appears to be suppressed before compaction and differentiation.  相似文献   

3.
4.
Within minutes of the induction of DNA double-strand breaks in somatic cells, histone H2AX becomes phosphorylated in the serine 139 residue at the damage site. The phosphorylated H2AX, designated as gamma-H2AX, is visible as nuclear foci in the irradiated cells which are thought to serve as a platform for the assembly of proteins involved in checkpoint response and DNA repair. It is known that early stage mammalian embryos are highly sensitive to radiation but the mechanism of radiosensitivity is not well understood. Thus, we investigated the damage response of the preimplantation stage development by analyzing focus formation of gamma-H2AX in mouse embryos gamma-irradiated in utero. Our analysis revealed that although H2AX is present in early preimplantation embryos, its phosphorylation after 3 Gy gamma-irradiation is hindered up to the two cell stage of development. When left in utero for another 24-64 h, however, these irradiated embryos showed delayed phosphorylation of H2AX. In contrast, phosphorylation of H2AX was readily induced by radiation in post-compaction stage embryos. It is possible that phosphorylation of H2AX is inefficient in early stage embryos. It is also possible that the phosphorylated H2AX exists in the dispersed chromatin structure of early stage embryonic pronuclei, so that it cannot readily be detected by conventional immunostaining method. In either case, this phenomenon is likely to correlate with the lack of cell cycle arrest, apoptosis and high radiosensitivity of these developmental stages.  相似文献   

5.
An in vitro model using co-culture of bovine in vitro-produced (IVP) embryos and bovine oviduct epithelial cells (bOECs) was established to study embryo-maternal interactions in the oviductal environment. In vitro conditions maintaining differentiated growth of oviductal cells were determined by evaluating several media supplemented with different sera at various concentrations. Morphological features were used as indicators of physiological growth, and it became obvious that synthetic oviduct fluid (SOF) supplemented with either oestrous cow serum (OCS) or dextran-coated charcoal-treated fetal calf serum (DCC-FCS) helped to prevent dedifferentiation of bOECs (Expt 1). RT-real-time-PCR analysis revealed an increased mRNA content of the oviduct-specific glycoprotein GP 85-97 when using lower serum concentrations (2 and 5% compared with 10%; Expt 2). In subsequent experiments in which cell-free cultured controls and co-cultured embryos were compared, co-cultured embryos showed an increased rate of cleavage (P < 0.05) after 3 days. Successive cell-free culture until day 8 resulted in a lower rate of blastocyst development (P < 0.05) and reduced ATP content (P < 0.05) of co-cultured versus control embryos (Expt 3). Long-term co-culture (8 days) in SOF with 5% OCS increased the expression of developmentally relevant genes (glucose transporter 1 (Glut-1) and heat shock protein (HSP 70)) in co-cultured versus control embryos (Expt 4). Higher embryonic Glut-1 mRNA expression after co-culture was obvious when using 10% DCC-FCS, but was not significant when culture medium was supplemented with 10% rather than 5% OCS (Expt 5). In conclusion, SOF with 5% OCS supports differentiated growth of bOECs. Co-culture under these conditions improves early cleavage rate, but not blastocyst development, and increases the expression of developmentally relevant genes influenced by type of serum and serum concentration.  相似文献   

6.
Mouse preimplantation development represents a tightly controlled programme of gene expression and cell division, which starts with the fertilized egg and ends with implantation of the blastocyst approximately 4.5 days later. Spatial and temporal differences in gene expression underpin establishment of axes at the two-cell stage and development of the trophectoderm and inner cell mass after embryo compaction at the eight-cell stage. Approximately 15 700 mouse genes expressed during preimplantation development have been identified from cDNA sequences deposited in the UniGene database of the National Institutes of Health. This inventory of preimplantation genes is the starting point for identifying signalling modules that function in preimplantation development.  相似文献   

7.
Cleavage-stage embryos have an absolute requirement for pyruvate and lactate, but as the morula compacts, it switches to glucose as the preferred energy source to fuel glycolysis. Substrates such as glucose, amino acids, and lactate are moved into and out of cells by facilitated diffusion. In the case of lactate and pyruvate, this occurs via H+-monocarboxylate cotransporter (MCT) proteins. To clarify the role of MCT in development, transport characteristics for DL-lactate were examined, as were mRNA expression and protein localisation for MCT1 and MCT3, using confocal laser scanning immunofluorescence in freshly collected and cultured embryos. Blastocysts demonstrated significantly higher affinity for DL-lactate than zygotes (Km 20 +/- 10 vs 87 +/- 35 mmol lactate/l; P = 0.03 by linear regression) but was similar for all stages. For embryos derived in vivo and those cultured with glucose, MCT1 mRNA was present throughout preimplantation development, protein immunoreactivity appearing diffuse throughout the cytoplasm with brightest intensity in the outer cortical region of blastomeres. In expanding blastocysts, MCT1 became more prominent in the cytoplasmic cortex of blastomeres, with brightest intensity in the polar trophectoderm. Without glucose, MCT1 mRNA was not expressed, and immunoreactivity dramatically reduced in intensity as morulae died. MCT3 mRNA and immunoreactivity were not detected in early embryos. The differential expression of MCT1 in the presence or absence of glucose demonstrates that it is important in the critical regulation of pH and monocarboxylate transport during preimplantation development, and implies a role for glucose in the control of MCT1, but not MCT3, expression.  相似文献   

8.
The objective of this study was to determine if season affected the production of in vitro-derived bovine embryos from oocytes of cattle in a subtropical environment. Ovaries (approximately 75% beef cattle, including many with Bos indicus breeding) were collected from an abattoir. Oocytes were obtained and subjected to in vitro maturation and fertilization. Embryos were then cultured in CR1aa medium. Cleavage rate averaged 72.2+/-9.7% and was not different between months of collection. In addition, no differences were observed in the percent of oocytes or embryos that became blastocysts on d 8 or 9 after insemination. Least-squares means averaged across months for percent oocytes and cleaved embryos to blastocyst on d 8 were 22.8+/-7.5% and 31.2+/-9.4%, respectively. When d 8 blastocysts were classified according to stage of development (nonexpanded, expanded, and hatched), an effect of month was observed that reflected month-to-month variation and not a consistent change associated with season. Taken together, results failed to indicate an effect of season on in vitro production of embryos in a subtropical environment.  相似文献   

9.
10.
11.
Efficient freezing, archiving, and thawing of sperm are essential techniques to support large scale research programs using mouse models of human disease. The purpose of this study was to investigate the effects of variable combinations and concentrations of cryoprotectants on sperm-assessment parameters of frozen-thawed mouse sperm in order to optimize cryopreservation protocols. Sperm was frozen using combinations of 3% skim milk + 0.2 or 0.3 M nonpermeating raffinose with either permeating glucose, fructose, propylene glycol, ethylene glycol, glycerol, or sodium pyruvate in CD-1, C3FeB6F1/J, B6129SF1, C57BL/6NCrIBR, 129S/SvPaslco, and DBA/2NCrIBR mice. Sperm-assessment parameters included progressive motility, plasma membrane integrity (SYBR-14 + PI), in vitro fertilization rate, and in vitro embryo development rate to blastocyst. DNA content analysis of sperm was measured by the sperm chromatin structure assay (SCSA). 0.3 M raffinose with 0.1 M fructose significantly improved post-thaw sperm-assessment parameters for CD-1, C3B6F1, B6129SF1 mice (P < 0.05-0.01), whereas 0.2 M raffinose with 0.1 M glycerol or 0.1 M fructose enhanced sperm assessment values for C57BL/6 and 129S mice (P < 0.01), compared to 0.3 M raffinose alone. DNA fragmentation during cryopreservation was significantly increased in all strains evaluated when compared with fresh control sperm in a strain-dependent manner (P < 0.01). Supplementation with permeating glycerol or fructose to the cryoprotectant (CPA) solution showed a significant protective effect to DNA integrity when cryopreserving sperm from C57BL/6 and 129S mice. Damage to sperm DNA significantly decreased the rate of in vitro embryo development to blastocyst in C57BL/6 mice. The type of monosaccharide sugar or polyols, CPA molarity, and combination of permeating and nonpermeating cryoprotectant are significant factors for improving progressive motility, plasma membrane integrity, DNA integrity, in vitro fertilization rate, and in vitro embryo development rate to blastocyst in cryopreserved mouse sperm.  相似文献   

12.
This study was carried out to determine the effects of beta-mercaptoethanol (bME) during a transient co-culture of gametes for 10 min, and/or the following culture until 6-9 h after insemination, on sperm penetration of porcine in vitro maturation (IVM) oocytes and the early development in vitro. When fresh spermatozoa were cultured in various concentrations of bME for 2 h, bME neutralized the stimulatory effect of caffeine-benzoate on sperm capacitation and the spontaneous acrosome reaction at 50-250 micromol/l. When 50 micromol/l bME were added during a transient co-culture of gametes for 10 min, the sperm penetration rate was reduced 9 h after insemination (70.5-82.0% vs 90.5-94.0% in the absence of bME), but the incidence of monospermic penetration was not affected. When 50 micromol/l bME were supplemented during culture after a transient co-culture, the sperm penetration rate was not affected, but the incidence of monospermy oocytes was increased (43.9-45.8% vs 31.7-34.3% in the absence of bME). The presence of bME following a transient co-culture minimized a decrease of oocyte glutathione content at 6 h after insemination (7.9 pmol/oocyte before in vitro fertilization (IVF), 6.7 pmol/oocyte in the presence of bME vs 5.5 pmol/oocyte in the absence of bME). When the distribution of cortical granules was evaluated 1 h after activation with calcium ionophore, mean pixel intensity of fluorescein isothiocyanate-labeled peanut agglutinin (FITC-PNA) at the cortex region was lower in the oocytes activated and cultured in the presence of 50 micromol/l bME. Although the presence of 50 micromol/l bME during a transient co-culture for 10 min and the following culture did not increased blastocyst formation (29.6-37.7%), 50 micromol/l bME during the following culture significantly increased the mean cell numbers per blastocyst (73.3-76.4 vs 51.2 in the presence and absence of bME respectively). These results demonstrate that supplementation with bME during IVF procedures, except during a transient co-culture period of gametes in the presence of caffeine, has a beneficial effect in maintaining the function of gametes, the incidence of normal fertilization and, consequently, the quality of IVF embryos.  相似文献   

13.
14.
Bovine preimplantation embryos develop more successfully when cultured in groups, proibably because of the increased production of, and exposure to, embryotrophic autocrine and paracrine factors. Using a novel embryo culture technique, this study had two aims: 1. to determine the distance over which potential paracrine interactions affect bovine embryo development in terms of blastocyst and hatching rates, cell counts and carbohydrate metabolism; 2. to investigate the effect of platelet-activating factor (PAF) supplementation on bovine embryo development and metabolism. Groups of 16 presumptive zygotes were attached to the bottom of a culture dish by the cell adhesive Cell-Tak in a 4 x 4 equidistant array. The distance between individual embryos in each group was 0-689 microm. Optimal blastocyst formation rate occurred when embryos were cultured 165 microm apart compared with control non-attached zygotes (Kruskal-Wallis followed by Mann-Whitney U test post-hoc; P < 0.05). Increasing the distance between embryos resulted in a further decline in blastocyst rate, which reached zero at 540 microm apart. Blastocyst cell number, pyruvate/glucose uptake and lactate production decreased as the interembryo distance increased from 240 to 465 microm (P < 0.05). Supplementation with PAF during conventional group culture enhanced blastocyst cell number, hatching rates and the oxidative metabolism of pyruvate and glucose. The data indicate that the distance between individual bovine embryos in culture influences preimplantation development, in particular blastocyst formation, cell number and metabolism. It is suggested that diffusible paracrine/autocrine factors, such as PAF, are in part responsible for the regulation of early embryo development.  相似文献   

15.
The aim of in vitro embryo systems is to produce embryos of comparable quality to those derived in vivo. Comparison of embryo metabolism as an indicator of viability may be useful in optimization of culture conditions. The aim of the present study was to determine glucose, glutamine and pyruvate use by various stage pig embryos produced in vitro and in vivo. The results indicate that pig embryos use glucose via glycolysis in significant amounts at all stages examined, regardless of embryo origin. In vitro-derived embryos have significantly increased glycolytic activity after the eight-cell stage, whereas in vivo-derived embryos have increased glycolysis at the blastocyst stage. In vivo-derived embryos have higher rates of glycolysis compared with in vitro-derived embryos. Glucose usage through the Krebs cycle for in vitro- and in vivo-derived embryos increased significantly at the blastocyst stage. Pig embryos produced in vitro used constant amounts of glutamine throughout development, whereas in vivo-derived embryos increased glutamine usage after the eight-cell stage. Pyruvate use was minimal at all stages examined for both in vitro- and in vivo-derived pig embryos, showing significant increases at the blastocyst stage. Krebs cycle metabolism of pyruvate, glutamine and glucose by in vivo-derived embryos was higher than that by in vitro-derived embryos. Current in vitro culture conditions produce pig embryos with altered metabolic activity, which may compromise embryo viability.  相似文献   

16.
In the preimplantation mouse embryo, the protein kinase C (PKC) family has been implicated in regulation of egg activation, progression of meiotic and mitotic cell cycles, embryo compaction, and blastulation, but the involvement of the individual isozymes is largely unknown. Here, using semiquantitative immunocytochemistry and confocal microscopy we analyze the relative amount and subcellular distribution of ten isozymes of PKC (alpha, betaI, betaII, gamma, delta, epsilon, eta, theta, zeta, iota/lambda) and a PKC-anchoring protein, receptor for activated C-kinase 1 (RACK1). Our results show that all of these isoforms of PKC are present between the two-cell and blastocyst stages of mouse preimplantation development, and that each has a distinct, dynamic pattern and level of expression. The data suggest that different complements of the isozymes are involved in various steps of preimplantation development, and will serve as a framework for further functional studies of the individual isozymes. In particular, there was a transient increase in the nuclear concentration of several isozymes at the early four-cell stage, suggesting that some of the PKC isozymes might be involved in regulation of nuclear organization and function in the early mouse embryo.  相似文献   

17.
18.
Preimplantation embryos can consume and produce amino acids in a manner dependent upon the stage of development that may be predictive of subsequent viability. In order to examine these relationships in the pig, patterns of net depletion and appearance of amino acids by in vitro produced porcine preimplantation embryos were examined. Cumulus oocyte complexes derived from slaughterhouse pre-pubertal pig ovaries were matured for 40 h in defined TCM-199 medium (containing PVA) before being fertilised (Day 0) with frozen-thawed semen in Tris-based medium. After 6 h, presumptive zygotes were denuded and cultured in groups of 20, in NCSU-23 medium modified to contain 0.1 mM glutamine plus a mixture of 19 amino acids (aa) at low concentrations (0.02-0.11 mM) (NCSU-23(aa)). Groups of 2-20 embryos were removed (dependent on stage) on Day 0 (1 cell), Day 1 (two- and four-cells), Day 4 (compact morulae) and Day 6 (blastocysts) and placed in 4 mul NCSU-23aa for 24 h. After incubation, the embryos were removed and the spent media was analysed by HPLC. The net rate of amino acid depletion or appearance varied according to amino acid (P < 0.001) and, apart from serine and histidine, stage of development (P < 0.014). Glycine, isoleucine, valine, phenylalanine, tryptophan, methionine, asparagine, lysine, glutamate and aspartate consistently appeared, whereas threonine, glutamine and arginine were consistently depleted. Five types of stage-dependent trends could be observed: Type I: amino acids having high rates of net appearance on Day 0 that reached a nadir on Day 1 or 4 but subsequently increased by Day 6 (glycine, glutamate); Type II: those that exhibited lower rates of net appearance on Days 0 and 6 compared with the intermediate Days 1 and 4 (isoleucine, valine, phenylalanine, methionine, arginine); Type III: amino acids which showed a continuous fall in net appearance (asparagine, aspartate); Type IV: those that exhibited a steady fall in net depletion from Day 0 to Day 6 (glutamine, threonine); Type V: those following no discernable trend. Analysis of further embryo types indicated that presumptive polyspermic embryos on Day 0 had increased (P < 0.05) net rates of leucine, isoleucine, valine and glutamate appearance, and reduced (P < 0.05) net rates of threonine and glutamine depletion compared with normally inseminated oocytes. These data suggest that the net rates of depletion and uptake of amino acids by pig embryos vary between a) amino acids, b) the day of embryo development and, c) the type of embryos present at a given stage of development. The results also suggested that the net depletion and appearance rates of amino acids by early pig embryos might be more similar to those of the human than those of the mouse and cow.  相似文献   

19.
Cytogenetic damage expressed as micronuclei (MN) in 4-8-cell embryos generated after irradiation of male or male and female mice in the absence and presence of vitamin C was investigated. Male NMRI mice were whole body exposed to 4 Gy gamma-rays and mated with non-irradiated superovulated female mice in 6 successive weeks after irradiation in a weekly interval. In experiments involving irradiation of both male and female mice, irradiated male mice for 6 weeks post irradiation were mated with female mice irradiated after induction of superovulation. Effect of 100 mg/kg vitamin C (ascorbic acid) on the frequency of MN was also studied. Pregnant animals were euthanized and embryos flushed from the oviducts and fixed on slides. The rate of MN observed in embryos generated from irradiated male compared with control group dramatically increased (P<0.01). Frequency of MN in this group decreased dramatically after vitamin C treatment (P<0.01). Frequency of MN in embryos generated by mating both male and female irradiated mice was higher than that observed for those embryos generated by irradiated male mice alone. However, a considerable modifying effect of vitamin C was observed for this group too (P<0.05). Results indicate that irradiation of gonads during spermatogenesis and preovulatory stage oocytes may lead to unstable chromosomal aberrations and probably stable chromosomal abnormalities affecting pairing and disjunction of chromosomes in successive preimplantation embryos expressed as MN. The way vitamin C reduces clastogenic effects of radiation on germ cells leading to reduced frequency of MN in pre-embryos might be due to its antioxidation and radical scavenging properties.  相似文献   

20.
Developmental and molecular correlates of bovine preimplantation embryos   总被引:2,自引:0,他引:2  
Expression of embryonic genes is altered in different culture conditions, which influence developmental potential both during preimplantation and fetal development. The objective of this study was to define the effects of culture conditions on: bovine embryonic development to blastocyst stage, blastocyst cell number, apoptosis and expression patterns of a panel of developmentally important genes. Bovine embryos were cultured in vitro in three culture media containing amino acids, namely potassium simplex optimization medium (KSOMaa), Charles Rosenkrans 1 (CR1aa) and synthetic oviductal fluid (SOFaa). Apoptosis in blastocysts was determined by TUNEL assay and expression profiles of developmentally important genes were assayed by real-time PCR. In vivo-produced bovine blastocysts were used as controls for experiments determining gene expression patterns. While the cleavage rates did not differ, embryos cultured in SOFaa had higher rates of development to blastocyst stage (P < 0.05). Mean cell numbers and percentages of apoptotic cells per blastocyst did not differ among the groups. Expression of the heat shock protein 70 (Hsp70) gene was significantly up-regulated in both CR1aa and KSOMaa when compared with SOFaa (P < 0.001). DNA methyltransferase 3a (Dnmt3a) expression was higher in embryos cultured in CR1aa than in those cultured in SOFaa (P < 0.001). Expression of interferon tau (IF-tau) and insulin-like growth factor II receptor (Igf-2r) genes was significantly up-regulated in KSOMaa when compared with CR1aa (P < 0.001). Gene expression did not differ between in vivo-derived blastocysts and their in vitro-derived counterparts. In conclusion, SOFaa supports higher development to blastocyst stage than KSOMaa and CR1aa, and the culture conditions influence gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号