首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dependences of the spectral peak position of edge photoluminescence, its half-width, resistivity, charge carrier mobility in crystals of semi-insulating undoped GaAs on the carbon concentration N C at 77 K (3.0×1015 cm?3N C≤4.3×1016 cm?3) were studied. The dependences observed are explained by the interaction of charge carriers with ionized impurity atoms and with structural defects.  相似文献   

2.
The effect of irradiation with electrons on the optical and electrical properties of the nanocrystalline rhombohedral 21R-SiC and 27R-SiC films is studied. The cycles of irradiation of nanocrystalline SiC films on sapphire substrates with electrons with the energy 10 MeV are conducted in the range of fluences from 5 × 1014 to 9 × 1019 cm?2. It is established that, at the irradiation doses above 1019 cm?2, the optical absorption of the films at the photon energies E > E g becomes less efficient than the optical absorption of unirradiated films. It is established that the Urbach energy as a function of the irradiation dose exhibits a minimum at the dose ~1017 cm?2 for the 21R-SiC films and ~5 × 1017 cm?2 for the 27R-SiC films, suggesting that radiation induces some ordering in the films. As the dose is increased from 5 × 1017 up to 9 × 1019 cm?2, an increase in the Urbach energy and a decrease in the optical band gap are observed. The effect is attributed to an increase in the concentration of radiation defects in the films.  相似文献   

3.
An injection photodiode with a high room-temperature rectification factor (105) is developed based on a p-Si-n-CdS-n +-CdS structure. It is shown that the light and dark current-voltage characteristics of the structure have identical features. It is found that the mode of “long” diodes is implemented in the structure at current densities of I = 10?2?5 × 10?4 A/cm2; in this case, the integral (S int) and spectral (S λ) sensitivities sharply increase. It is shown that S int = 2.8 × 104 A/lm (3 × 106 A/W) for an illuminance of E = 0.1 lux and S λ = 2.3 × 104 A/W under laser irradiation with λ = 625 nm and a power of P = 10 μW/cm2 at a bias voltage of V = 20 V. It is shown that the mechanism of photocurrent amplification is predominantly associated with ambipolar carrier-mobility modulation.  相似文献   

4.
The impact ionization of acceptors in aluminum-doped 4H-SiC epitaxial films (Al concentration 2 × 1015 cm?3) at a temperature of 77 K is studied. It is found that the impact-ionization coefficient exponentially depends on the reverse electric field: α p = α*pexp(?F*/F). The largest ionization coefficient is α* p = 7.1 × 106 cm?3 s?1, and the threshold field is F* = 2.9 × 104 V/cm.  相似文献   

5.
The thermal conductivity κ of HgSe:Fe samples with various content N Fe of Fe impurity was studied in the temperature range of 8–60 K. It was found that the dependence of the thermal conductivity κ on N Fe is unconventional at low temperatures. For T<12 K, the value of κ first decreases with an increase in the Fe concentration up to N Fe=5×1018 cm?3 and then increases and attains a maximum for N Fe=(1–2)×1019 cm?3. A further increase in Fe concentration brings about a steady decrease in thermal conductivity. The electron-and phonon-related thermal conductivity of HgSe:Fe crystals with consideration of the effects caused by the ordering of trivalent Fe ions was analyzed. It is shown that both the electron-and phonon-related contributions to thermal conductivity at low temperatures are increasing functions of Fe concentration in the range of 5×1018<N Fe<(1–2)×1019 cm?3. However, the electronic contribution is too small to account for the experimental increase in thermal conductivity. An analysis of the lattice contribution to thermal conductivity showed that an anomalous increase in thermal conductivity is caused by a reduction in the Rayleigh scattering of phonons by a system of Fe ions with mixed valence and is related to the spatial ordering of Fe3+ ions.  相似文献   

6.
The conductivity and Hall effect of heavily doped p-Hg0.78Cd0.22Te:Cu crystals were studied in the temperature range of 4.2–125 K. The conductivity over the impurity band is of a metallic type for the acceptor concentration N A>3.8×1017 cm?3. The conductivity and the Hall coefficient governed by the delocalized charge carriers in the impurity band are independent of temperature. The sign of the Hall effect is positive in the metallic conductivity range. Near the metal-insulator transition point, the Hall mobility increases linearly with the acceptor concentration and is independent of the acceptor concentration at N A>1.6×1018 cm?3. The metallic conductivity is proportional to N A in the concentration range under study at N A<3.1×1018 cm?3. The Anderson transition occurs at the Cu concentration N A=1.4×1017 cm?3 in the A + impurity band, which is formed by positively charged acceptors. Minimum metallic conductivity corresponding to this transition equals 5.1 Ω?1 cm?1. It is shown that ?2 conductivity in the subthreshold region is defined by delocalized carriers in the upper Hubbard band only for fairly heavy doping (N A>1.4×1017 cm?3). For N A<1.4×1017 cm?3, the hopping conductivity is observed.  相似文献   

7.
Morphological and optical studies of the Si-doped GaN films (doping level N Si = 1.5 × 1019 cm?3) grown by vapor-phase epitaxy from metalorganic compounds on a sapphire substrate oriented along the c axis are conducted. For the grown GaN films, the following characteristics are obtained: energy of electron transition E 0, absorption coefficient α, refractive index n, and frequencies of transverse and longitudinal optical lattice vibrations characteristic of the crystalline GaN films.  相似文献   

8.
We have prepared 2 % Al-doped ZnO (AZO) thin films on SrTiO3 substrates by a pulsed laser deposition technique at various deposition temperatures (T dep = 300–600 °C). The thermoelectric properties of AZO thin films were studied in a low temperature range (300–600 K). Thin film deposited at 300 °C is fully c-axis-oriented and presents electrical conductivity 310 S/cm with Seebeck coefficient ?65 μV/K and power factor 0.13 × 10?3 Wm?1 K?2 at 300 K. The performance of thin films increases with temperature. For instance, the power factor is enhanced up to 0.55 × 10?3 Wm?1 K?2 at 600 K, surpassing the best AZO film previously reported in the literature.  相似文献   

9.
We have investigated the thermoelectric properties of p-type Na-doped Mg2 Si0.25Sn0.75 solid solutions prepared by liquid–solid reaction and hot-pressing methods. Na was introduced into Mg2Si0.25Sn0.75 by using either sodium acetate (CH3COONa) or metallic sodium (2 N). The samples doped with sodium acetate consisted of phases with antifluorite structure and a small amount of MgO as revealed by x-ray diffraction, whereas the sample doped with metallic sodium contained the Sn, MgO, and Mg2SiSn phases. The hole concentrations of Mg1.975Na0.025Si0.25Sn0.75 doped by sodium acetate and metallic sodium were 1.84 × 1025 m?3 and 1.22 × 1025 m?3, respectively, resulting in resistivities of 4.96 × 10?5 Ω m (sodium acetate) and 1.09 × 10?5 Ω m (metallic sodium). The Seebeck coefficients were 198 μV K?1 (sodium acetate) and 241 μV K?1 (metallic sodium). The figures of merit for Mg1.975Na0.025Si0.25Sn0.75 were 0.40 × 10?3 K?1 (sodium acetate) and 0.25 × 10?3 K?1 (metallic sodium) at 400 K. Thus, sodium acetate is a suitable Na dopant for Mg2Si1?x Sn x .  相似文献   

10.
The role of the phase diagram for the Ga-As-S system in the selection of the starting diffusion source composition is discussed. The temperature dependence of the diffusion coefficient of sulfur in GaAs has been measured for various diffusion source compositions. For the 10:1 (GaS:As) source, the diffusion coefficient at 810° and 910°C are 1·9×10?14 and 0·9×10?12 cm2 sec?1 and for the 2:1 and 1:2 sources the coefficient at 810° and 910°C are 1·9×10?13 and 2·9×10?12 cm2 sec?1, respectively. The activation energy of the diffusion coefficient is found to be about 4·35 and 2·95 eV for the 10:1 source and for the 2:1 and 1:2 sources, respectively. These diffusion sources yield reproducible diffusion profiles without surface damage. The surface concentration of sulfur is estimated about 3×1018 cm?3 for the 10:1 source at 910°C diffusion. Breakdown voltage of the n+p junction prepared by these diffusion processes and SiN planar technology agrees extremely well with theoretical values.  相似文献   

11.
Diffusion of Cr into epitaxial GaAs in an open system in the temperature range of 750–850°C was studied. Temperature dependences of the diffusion coefficient and solubility of Cr in GaAs were determined. Temperature dependences of the diffusion coefficient and solubility of Cr are described by the Arrhenius equation with the parameters D 0 = 1.9 × 109 cm2/s and E = 4.1 ± 0.2 eV for the diffusion coefficient and N 0 = 2.3 × 1024 cm?3 and E 0 = 1.9 ± 0.4 eV for solubility. The effect of protective SiO2 filmon the Cr diffusion coefficient and morphology of the GaAs surface after diffusion was studied.  相似文献   

12.
Anomalous temperature dependences of the specific contact resistance ρ c (T) of Pd2Si-Ti-Au ohmic contacts to lapped n-Si with dopant concentrations of 5 × 1016, 3 × 1017, and 8 × 1017 cm?3 have been obtained. The anomalous dependences of ρ c (T) have been accounted for under the assumption that the current flows along nanodimensional metallic shunts, which are combined with dislocations with a diffusionrelated limit in the supply of charge carriers taken into account. The densities of conducting and scattering dislocations in the surface region of the semiconductor are determined.  相似文献   

13.
p-Type antimony telluride (Sb2Te3) thermoelectric thin films were deposited on BK7 glass substrates by ion beam sputter deposition using a fan-shaped binary composite target. The deposition temperature was varied from 100°C to 300°C in increments of 50°C. The influence of the deposition temperature on the microstructure, surface morphology, and thermoelectric properties of the thin films was systematically investigated. x-Ray diffraction results show that various alloy composition phases of the Sb2Te3 materials are grown when the deposition temperature is lower than 200°C. Preferred c-axis orientation of the Sb2Te3 thin film became obvious when the deposition temperature was above 200°C, and thin film with single-phase Sb2Te3 was obtained when the deposition temperature was 250°C. Scanning electron microscopy reveals that the average grain size of the films increases with increasing deposition temperature and that the thin film deposited at 250°C shows rhombohedral shape corresponding to the original Sb2Te3 structure. The room-temperature Seebeck coefficient and electrical conductivity range from 101 μV K?1 to 161 μV K?1 and 0.81 × 103 S cm?1 to 3.91 × 103 S cm?1, respectively, as the deposition temperature is increased from 100°C to 300°C. An optimal power factor of 6.12 × 10?3 W m?1 K?2 is obtained for deposition temperature of 250°C. The thermoelectric properties of Sb2Te3 thin films have been found to be strongly enhanced when prepared using the fan-shaped binary composite target method with an appropriate substrate temperature.  相似文献   

14.
We propose a novel adaptive technique based on pseudo-random (PN) sequences for self-calibration and self-testing of MEMS-based inertial sensors (accelerometers and gyroscopes). The method relies on using a parameterized behavioral model implemented on FPGA, whose parameters values are adaptively tuned, based on the response to test pseudo-random actuation of the physical structure. Dedicated comb drives actuate the movable mass with binary maximum length pseudo-random sequences of small amplitude, to keep the device within the linear operating regime. The frequency of the stimulus is chosen within the mechanical spectral operating range of the micro-device, such that the induced response leads to the identification of the mechanical transfer function, and to the tuning of the associated digital behavioral model. In case of a micro-gyroscope, experimental results demonstrate the adaptive tracking of the damping coefficient from 5.57?×?10?5? Kg/s to 7.12?×?10?5? Kg/s and of the stiffness coefficient from 132?N/m to 137.7?N/m. In the case of a MEMS accelerometer, the damping and stiffness coefficients are correctly tracked from 3.4?×?10?3? Kg/s and 49.56?N/m to 4.57?×?10?3? Kg/s and 51.48?N/m, respectively—the former values are designer-specified target values, while the latter are experimentally measured parameters for fabricated devices operating in a real environment. Hardware resources estimation confirms the small area the proposed algorithm occupies on the targeted FPGA device.  相似文献   

15.
Al/Sb double-doped Mg2Si0.75Sn0.25 materials were prepared by liquid–solid reaction synthesis and the hot-pressing technique. The effects of Al/Sb double doping on the thermoelectric properties were investigated at temperatures between room temperature and 900 K, and the resistivity and Hall coefficient were investigated at 80 K to 900 K. Al/Sb double-doped samples were found to be n-type semiconductors in the investigated temperature range. The absolute Seebeck coefficient (α), resistivity (ρ), and thermal conductivity (κ) for Al/Sb double-doped samples at room temperature were in the ranges of 152.5 μV K?1 to 109.2 μV K?1, 2.92 × 10?5 Ω m to 1.29 × 10?5 Ω m, and 2.50 W K?1 m?1 to 2.86 W K?1 m?1, respectively. The absolute values of α increased with increasing temperature up to a maximum, and decreased thereafter. This could be attributed to mixed carrier conduction in the intrinsic region. κ decreased linearly with increasing temperature to a minimum near the intrinsic region, then increased rapidly because of bipolar components. The highest ZT value measured was 0.94 at 850 K for Mg1.9975Al0.0025Si0.75Sn0.2425Sb0.0075. Sb doping was effective for enhancement of ZT, because of a remarkable increase in the carrier concentration. However, Al doping was almost ineffective for enhancing ZT.  相似文献   

16.
Titanium inserted in silicon by diffusion or during Czochralski ingot growth is electrically active to a concentration level of about 4 × 1014 cm?3. Hall measurements after diffusion show conversion of lightly doped p type Si to n type due to a Ti donor level at EC - 0.22 eV. In DLTS measurements of n+p structures this level shows as an electron (minority carrier) trap at EC - 0.26 eV with an electron capture cross section of about 3 × 10?15 cm2 at 300°K. The DLTS curves also reveal a hole trap in the p type material. The ep (300/T)2 activation plot gives the level as EV + 0.29 eV. The hole capture cross section is about 1.7 × 10?17 cm2 at 300°K and decreases with decreasing temperature and the corrected trap level becomes EV = 0.26 eV. Ti in lightly doped (360 ohm-cm) n type material does not result in conversion to p type so this level is inferred also to be a donor.A Ti electrically active concentration of about 1.35 × 1013 cm?3 in p type (NA = 3.35 × 1015cm?3) Si results in a minority carrier (electron) lifetime of 50 nsec at 300°K.  相似文献   

17.
The results of studying the electrical properties and isochronous annealing of p-ZnSnAs2 irradiated with H+ ions (energy E = 5 MeV, dose D = 2 × 1016 cm?2) are reported. The limiting electrical characteristics of irradiated material (the Hall coefficient R H (D)lim ≈ ?4 × 103 cm3 C?1, conductivity σ (D)lim ≈ 2.9 × 10?2 Ω?1 cm?1, and the Fermi level position F lim ≈ 0.58 eV above the valence-band top at 300 K) are determined. The energy position of the “neutral” point for the ZnSnAs2 compound is calculated.  相似文献   

18.
The correlation between the noise level 1/f and the degree of mosaic-structure order in gallium nitride epitaxial layers was studied for the first time. Samples with a doping level of N d ?N a ≈8×1016 cm?3 and a relatively high degree of order were characterized by the Hooge parameter α≈1.5×10?3. This value is unprecedently low for thin GaN epitaxial films. The Hooge parameter was significantly higher for samples with N d ?N a ≈1.1×1018 cm?3 and a low degree of order despite the fact that α generally decreases with increasing doping level at the same degree of order. Thus, the degree of mosaic-structure order affects not only the optical and electrical characteristics but also the fluctuation parameters of GaN epitaxial layers.  相似文献   

19.
To investigate the effect of annealing in controlled atmosphere on the thermoelectric properties of Bi-Te film, Te-deficient Bi-Te film was deposited by sputtering, and then annealed with various Bi-Te alloy powders with different Te concentrations in a closed system at 250°C for 24?h. Bi-Te phases other than Bi2Te3 in the as-deposited film could be removed when the film was annealed with Bi-Te source powder containing 62?at.% or higher content of Te. At the same time, the values of Seebeck coefficient and carrier concentration of the films approach ?105???V/K and 3?×?1019?cm?3 to 6?×?1019?cm?3, respectively. This result indicates that mass transport of Te to the film takes place, resulting in the formation of Bi2Te3 phase and reduction of the amount of p-type carriers due to compositional change of the film from Te-deficient to stoichiometric. Annealing in controlled Te-vapor atmosphere is an effective method to improve the thermoelectric properties of Bi-Te film by changing the composition and phase of Te-deficient film to stoichiometric Bi2Te3 film.  相似文献   

20.
The hole and electron capture cross sections of the gold donor and acceptor have been measured directly in n-type silicon. The samples have been grown by the Czochralski technique and have originated from several different suppliers. They have been diffused with gold so that NT ? 0.1 (ND-NA). Measurements have been made on both Schottky diodes and diffused junctions and similar results obtained from all samples. The electron cross section of the acceptor level was found to be (0.85±0.2) × 10?16cm2 and the hole cross section of the donor (3.5±0.8) × 10?15cm2, both were essentially temperature independent. The hole cross section of the acceptor was (0.9±0.2) × 10?14cm2 at 300 K and showed a T?1.3 temperature dependence. The electron cross section of the donor was (0.9±0.2) × 10?15cm2 at 180 K with a T?2 dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号