首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. We examined whether zaprinast, a putative cGMP-specific phosphodiesterase inhibitor, affects neural control of renal function in pentobarbital-anaesthetized dogs. 2. Renal nerve stimulation (1 Hz, 1 ms duration) reduced urine flow rate, urinary Na+ excretion (UNaV) and fractional excretion of Na+ (FENa) with little change in either renal blood flow (RBF) or glomerular filtration rate (GFR). 3. Intrarenal arterial infusion of zaprinast (10 and 100 micrograms/kg per min) increased basal urine flow rate, UNaV and FENa but not RBF or GFR. Zaprinast infusion (100 micrograms/kg per min) also increased renal venous plasma cGMP concentration and urinary cGMP excretion. 4. Renal nerve stimulation-induced reductions in UNaV and FENa were attenuated during zaprinast infusion, whereas the reduction in urine flow rate was resistant to zaprinast. 5. Renal nerve stimulation increased the renal venous plasma noradrenaline concentration and renal noradrenaline efflux, which remained unaffected during infusion of zaprinast (100 micrograms/kg per min). 6. The results of the present study suggest that zaprinast induces natriuresis and counteracts adrenergically induced antinatriuresis by acting on renal tubular sites in the dog kidney in vivo.  相似文献   

2.
Exogenous angiotensin (Ang) 1-7 affects renal function, but the receptor(s) involved in this response remain(s) to be determined. In an in vitro preparation of proximal tubules, Ang 1-7 was shown to act on Ang II AT1 receptors (minor component), but also on a non-AT1, non-AT2 Ang receptor (major component) to inhibit reabsorption. In brain, Ang 1-7 also exerts effects mediated by a non-AT1, non-AT2 binding site; these effects are inhibited, however, by the angiotensin analog [7-D-Ala]-Ang 1-7. Therefore we tested the effect of Ang II AT1-receptor antagonist losartan and [7-D-Ala]-Ang 1-7 on the renal response to exogenous Ang 1-7 in standard renal-clearance experiments in the anesthetized rat. We found that Ang 1-7 (100 pmol/kg/min, i.a.) increased glomerular filtration rate (GFR), urinary flow rate (UV), and urinary sodium excretion (UNaV) without affecting mean arterial blood pressure (MAP) or urinary potassium excretion (UKV), confirming previous reports. Losartan (10 mg/kg, i.v.) blocked the pressor effect of exogenous Ang II (100 pmol/kg/min, i.a.), but did not significantly affect the renal response to Ang 1-7. Conversely, pretreatment with [7-D-Ala]-Ang 1-7 (5 nmol/kg/min) did not affect the pressor effect of Ang II, but abolished the renal response to Ang 1-7. Application of [7-D-Ala]-Ang 1-7 in the absence of exogenous Ang 1-7 did not alter MAP or GFR, but increased UNaV (by 52%). Our data indicate that similar to the response in brain, the renal response to exogenous Ang 1-7 may be mediated predominantly by a distinct non-AT1 binding site, which is sensitive to blockade by [7-D-Ala]-Ang 1-7. Furthermore, ambient endogenous Ang 1-7 acting on this distinct binding site may not contribute significantly to control of MAP or GFR, but exerts an antinatriuretic influence in the anesthetized rat.  相似文献   

3.
The present study examined the effect of renal denervation on the impairment of the pressure-diuresis response produced by nitric oxide synthesis blockade. The experiments were performed in Inactin-anesthetized Munich-Wistar rats. The animals with innervated kidneys had lower baseline values of renal blood flow, GFR, sodium excretion (UNaV), and urine flow (V) than rats with denervated kidneys. Also, renal denervation shifted pressure-diuresis and natriuresis toward lower pressures. A low dose of N(omega)-nitro-L-arginine methyl esther (NAME, 3.7 nmol/kg per min) reduced UNaV and the fractional excretion of sodium (FENa) and blunted pressure-natriuresis only in rats with innervated kidneys, whereas it had no effects in rats with denervated kidneys. A medium dose of NAME (37 nmol/kg per min) lowered FENa only in rats with innervated kidneys. The administration of NAME (37 nmol/kg per min) blunted pressure-diuresis and natriuresis in kidneys with or without the renal nerves, but the effect was more pronounced in rats with innervated kidneys. A high dose of NAME (3.7 micromol + 185 nmol/kg per min) increased UNaV and FENa only in rats with innervated kidneys, whereas it reduced GFR, V, UnaV, and FENa in rats with denervated kidneys. However, pressure-natriuresis and diuresis were blunted by this high dose of NAME independently of the presence or absence of renal nerves. These results demonstrate that renal nerves potentiate the renal effects of low doses of NAME on renal function and pressure-diuresis and natriuresis. However, high doses of NAME abolish pressure-diuresis independently of renal nerves, and the natriuretic effect of NAME in innervated kidneys may be attributed to reflex inhibition of sympathetic tone due to the rise in arterial pressure.  相似文献   

4.
To identify the contribution of natriuretic peptide (NP) activity to the adaptative increases in glomerular filtration rate (GFR), effective renal plasma flow rate (ERPF) and fractional sodium excretion (FENa) observed in the remnant kidney, we investigated the acute effects of administering HS-142-1 (HS), a potent NP receptor antagonist, in 5/6th nephrectomized (NPX) rats. In addition to normal sodium intake, high or low sodium intakes were used to stimulate or suppress, respectively, endogenous NP activity in NPX rats. In rats three days after NPX on high sodium, HS (20 mg/kg bolus i.v.) reduced GFR from 0.55 +/- 0.05 to 0.35 +/- 0.04 ml/min; ERPF from 1.83 +/- 0.19 to 1.53 +/- 0.16 ml/min; and FENa from 7.1 +/- 1.1 to 1.6 +/- 0.4%, without affecting MAP. Similar changes of lesser magnitude were observed in NPX rats on normal sodium intake. By contrast, GFR, ERPF, FENa and MAP were unchanged following HS in NPX rats on low sodium intake, suggesting that the magnitude of responses to HS is dependent upon the expected levels of activity of NP. We conclude that in anesthetized rats, natriuretic peptides contribute to the compensatory increases in GFR, ERPF and FENa observed in the remnant kidney under normal and salt-replete conditions.  相似文献   

5.
-Previous studies have shown that whereas the nonclipped kidney in two-kidney, one clip (2K1C) rats undergoes marked depletion of renin content and renin mRNA, intrarenal angiotensin II (Ang II) levels are not suppressed; however, the distribution and functional consequences of intrarenal Ang II remain unclear. The present study was performed to assess the plasma, kidney, and proximal tubular fluid levels of Ang II and the renal responses to intrarenal Ang II blockade in the nonclipped kidneys of rats clipped for 3 weeks. The Ang II concentrations in proximal tubular fluid averaged 9.19+/-1.06 pmol/mL, whereas plasma Ang II levels averaged 483+/-55 fmol/mL and kidney Ang II content averaged 650+/-66 fmol/g. Thus, as found in kidneys from normal rats with normal renin levels, proximal tubular fluid concentrations of Ang II are in the nanomolar range. To avoid the confounding effects of decreases in mean arterial pressure (MAP), we administered the nonsurmountable AT1 receptor antagonist candesartan directly into the renal artery of nonclipped kidneys (n=10). The dose of candesartan (0.5 microg) did not significantly decrease MAP in 2K1C rats (152+/-3 versus 148+/-3 mm Hg), but effectively prevented the renal vasoconstriction elicited by an intra-arterial bolus of Ang II (2 ng). Candesartan elicited significant increases in glomerular filtration rate (GFR) (0.65+/-0. 06 to 0.83+/-0.11 mL. min-1. g-1) and renal blood flow (6.3+/-0.7 to 7.3+/-0.9 mL. min-1. g-1), and proportionately greater increases in absolute sodium excretion (0.23+/-0.07 to 1.13+/-0.34 micromol. min-1. g-1) and fractional sodium excretion (0.38+/-0.1% to 1.22+/-0. 35%) in 2K1C hypertensive rats. These results show that proximal tubular fluid concentrations of Ang II are in the nanomolar range and are much higher than can be explained on the basis of plasma levels. Further, the data show that the intratubular levels of Ang II in the nonclipped kidneys of 2K1C rats remain at levels found in kidneys with normal renin content and could be exerting effects to suppress renal hemodynamic and glomerular function and to enhance tubular reabsorption rate.  相似文献   

6.
BACKGROUND: It is clear that women with renal disease progress to end stage at a slower rate than do men. We hypothesized that this protection may result from gender-mediated differences in responses to angiotensin II (Ang II), which has known hemodynamic effects that are thought to promote renal disease progression. We examined sex differences in renin-angiotensin system (RAS) function by measuring renal hemodynamic function and circulating plasma components of the RAS at baseline and in response to graded infusions of Ang II. METHODS: We studied two groups of normal healthy subjects, 24 men and 24 women, mean age 28 +/- 1 years, ingesting a controlled sodium and protein diet. We examined baseline concentrations of angiotensin converting enzyme, plasma renin activity, Ang II, and aldosterone. Inulin and paraaminohippurate clearance techniques were used to estimate effective renal plasma flow (ERPF) and glomerular filtration rate (GFR) at baseline and in response to graded Ang II infusion (0.5, 1.5, and 2.5 ng/kg/min). RESULTS: Mean baseline values for mean arterial pressure and aldosterone were lower in women, whereas values for plasma Ang II, GFR, ERPF, and filtration fraction (FF) did not differ. In response to Ang II, both groups exhibited a similar increase in mean arterial pressure and a decline in ERPF. GFR was maintained during Ang II infusion only in men, resulting in an augmentation of FF. In women, GFR declined in parallel with ERPF, and the FF response was significantly blunted. 17beta-Estradiol plasma concentrations influenced the ERPF response to Ang II infusion, with higher levels predicting a blunting of the decrease. The GFR response was not affected. CONCLUSIONS: The renal microcirculation in sodium-replete women may respond differently to Ang II than that of men, with the female sex predicting a lesser augmentation of FF and possibly a blunted increase in intraglomerular pressure. The mechanism remains obscure, but these contrasting responses may help to explain gender-mediated differences in renal disease progression.  相似文献   

7.
1. We tested the hypothesis that nitric oxide (NO) exerts a tonic inhibitory influence on cytochrome P450 (CYP450)-dependent metabolism of arachidonic acid (AA). 2. N(omega)-nitro-L-Arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase (NOS), increased mean blood pressure (MBP), from 91+/-6 to 137+/-5 mmHg, renal vascular resistance (RVR), from 9.9+/-0.6 to 27.4+/-2.5 mmHg ml(-1) min(-1), and reduced renal blood flow (RBF), from 9.8+/-0.7 to 6.5+/-0.6 ml min(-1)) and GFR from 1.2+/-0.2 to 0.6+/-0.2 ml 100 g(-1) min(-1)) accompanied by diuresis (UV, 1.7+/-0.3 to 4.3+/-0.8 microl 100 g(-1) min (-1)), and natriuresis (U(Na)V, 0.36+/-0.04 to 1.25+/-0.032 micromol 100 g(-1) min(-1)). 3. 12, 12 dibromododec-enoic acid (DBDD), an inhibitor of omega hydroxylase, blunted L-NAME-induced changes in MBP, RVR, UV and U(Na)V by 63+/-8, 70+/-5, 45+/-8 and 42+/-9%, respectively, and fully reversed the reduction in GFR by L-NAME. Clotrimazole, an inhibitor of the epoxygenase pathway of CYP450-dependent AA metabolism, was without effect. 4. BMS182874 (5-dimethylamino)-N-(3,4-dimethyl-5-isoxazolyl)-1-naphthalenesulfo namide), an endothelin (ET)A receptor antagonist, also blunted the increases in MBP and RVR and the diuresis/natriuresis elicited by L-NAME without affecting GFR. 5. Indomethacin blunted L-NAME-induced increases in RVR, UV and U(Na)V. BMS180291 (1S-(1alpha,2alpha,3alpha,4alpha)]-2-[[3-[4-[(++ +pentylamino)carbonyl]-2-oxazolyl]-7-oxabicyclo[2.2.1]hept-2-yl ]methyl]benzenepropanoic acid), an endoperoxide receptor antagonist, attenuated the pressor and renal haemodynamic but not the renal tubular effects of L-NAME. 6. In conclusion, the renal functional effects of the CYP450-derived mediator(s) expressed after inhibition of NOS with L-NAME were prevented by inhibiting either CYP450 omega hydroxylase or cyclooxygenase or by antagonizing either ET(A) or endoperoxide receptors. 20-hydroxyeicosatetraenoic acid (20-HETE) fulfils the salient properties of this mediator.  相似文献   

8.
In vitro and animal studies have demonstrated that the effect of angiotensin II (Ang II) on aldosterone is mediated through the Ang II type 1 receptor. However, it has been difficult to demonstrate an effect of Ang II type 1 receptor blockade on aldosterone levels in human studies. One possible explanation is that subjects have not been studied under salt-controlled conditions. Therefore, we examined the effects of losartan on the aldosterone and renal plasma flow responses to Ang II infusion in six normotensive subjects under low and high salt conditions. Ang II was infused in graded doses (0.3 to 10 ng/kg per minute) in the presence and absence of losartan (a single 50-mg oral dose). Renal plasma flow was assessed by measurement of para-aminohippurate clearance. Blood pressure, plasma aldosterone levels (low salt conditions only), and para-aminohippurate clearance were measured before and after each Ang II dose. Losartan had no effect on baseline systolic pressure but attenuated the systolic pressure response to exogenous Ang II during both low salt (0.7 +/- 1.9 versus 6.7 +/- 1.4 mm Hg, P = .001) and high salt (2.0 +/- 1.9 versus 12.3 +/- 2.1 mm Hg, P = .006) conditions. Under low salt conditions, losartan reduced the baseline plasma aldosterone level from 1135 +/- 204 to 558 +/- 102 pmol/L (P = .015) and blocked the aldosterone response to Ang II (-49 +/- 110 versus +436 +/- 83 pmol/L, P = .019). During high salt conditions, losartan had no effect on baseline renal plasma flow but attenuated the renal plasma flow response to Ang II (-90.1 +/- 15.1 versus -185.1 +/- 2.6 mL/min per 1.73 m2, P = .013). These data confirm that losartan lowers both basal and exogenous Ang II-stimulated aldosterone levels under low salt conditions. Losartan does not significantly affect baseline renal plasma flow but does attenuate the renal plasma flow response to exogenous Ang II under high salt conditions.  相似文献   

9.
Chronic insulin infusion in rats increases mean arterial pressure (MAP) by a mechanism dependent on angiotensin II (Ang II). However, the fact that plasma renin activity (PRA) decreases with insulin infusion suggests that Ang II sensitivity is increased and that the parallel reduction in Ang II may partly counteract any hypertensive action of insulin. This study tested that hypothesis by clamping Ang II at baseline levels during chronic insulin infusion. Sprague-Dawley rats were instrumented with artery and vein catheters, and MAP was measured 24 hours per day. In seven angiotensin clamped rats (AC rats), renin-angiotensin II system activity was clamped at normal levels throughout the study by continuous intravenous infusion of the angiotensin-converting enzyme inhibitor benazepril at 5 mg/kg per day (which decreased MAP by 18+/-2 mm Hg) together with intravenous Ang II at 5 ng/kg per minute. Control MAP in AC rats after clamping averaged 99+/-1 mm Hg, which was not different from the 101+/-2 mm Hg measured before clamping Ang II levels. Control MAP in the 8 vehicle-infused rats averaged 105+/-2 mm Hg. A 7-day infusion of insulin (1.5 mU/kg per minute IV) plus glucose (20 mg/kg per minute IV) increased MAP in both groups of rats; however, the increase in MAP was significantly greater in AC rats (12+/-1 versus 5+/-1 mm Hg). This enhanced hypertensive response to insulin in AC rats was associated with a greater increase in renal vascular resistance (153+/-10% versus 119+/-6% of control) and a significant increase in renal formation of thromboxane (149+/-11% of control). Thus, decreased Ang II during insulin infusion limits the renal vasoconstrictor and hypertensive actions of insulin, and this may be caused, at least in part, by attenuation of renal thromboxane production.  相似文献   

10.
OBJECTIVES: The angiotensin type 1 (AT1) receptor antagonist, losartan (orally administered), decreases vasoconstrictor effects of angiotensin II (Ang II). Oral losartan is converted into the active metabolite, Exp3174, which causes most of the antagonistic effects. Effects of losartan as such have not been studied after its intra-arterial administration in humans. Therefore, we investigated the effects of both intra-arterially and orally administered losartan on AT1-receptor-mediated vasoconstriction. METHODS: Forearm vascular resistance (FVR) was determined by venous occlusion plethysmography in 24 healthy subjects. Ang II (0.01, 0.1, 1.0, and 10.0 ng/kg/min) was infused into the brachial artery, before and after losartan, administered intra-arterially (dose range 100-3000 ng/kg/min) or orally (50 mg once daily for 5 days). RESULTS: Ang II concentration-dependently increased FVR (P < 0.05); tachyphylaxis did not occur. Losartan alone did not change FVR. Intra-arterially infused losartan dose-dependently inhibited Ang-II-induced vasoconstriction. At a concentration of 10(-8) M Ang II, losartan reduced FVR, as a percentage of baseline values, from 287 +/- 30 to 33 +/- 8% (mean +/- s.e.m.; P < 0.05). Orally given losartan reduced FVR from 297 +/- 40 to 73 +/- 19% (P < 0.05). CONCLUSIONS: Losartan, intra-arterially administered, causes no effect on baseline vascular resistance, but markedly inhibits Ang-II-induced vasoconstriction in the human forearm vascular bed. Relatively high doses of intra-arterial losartan were required when compared to the antagonism by the orally administered drug. These data indicate that Ang-II-induced vasoconstriction is mediated by AT1-receptors, which are blocked by losartan. The more effective antagonism exerted by oral losartan is presumably explained by the formation of Exp3174. Endogenous Ang II does not contribute to baseline vascular tone in healthy, sodium-replete, subjects.  相似文献   

11.
We have studied the differential role of endothelium-derived nitric oxide (EDNO) in the regulation of the systemic and pulmonary circulations of the lamb. Hemodynamic effects of NG-nitro-L-arginine methyl ester (L-NAME, 1 mg/kg i.v.), an inhibitor of NO synthesis, were determined in juvenile (6 +/- 1 weeks old) lambs, under conditions of basal and elevated vasomotor tone. Under basal conditions, L-NAME raised both systemic (SVR) and pulmonary vascular resistances (PVR) by 20-30% (increasing SVR from 0.318 +/- 0.013 to 0.385 +/- 0.015 mm Hg.min.ml-1.kg and PVR from 0.050 +/- 0.003 to 0.067 +/- 0.010 mm Hg.min.ml-1.kg). When tone was elevated in the pulmonary circulation with hypoxia (PVR was elevated by 60%, from 0.059 +/- 0.010 to 0.094 +/- 0.019 mm Hg.min.ml-1.kg), L-NAME treatment resulted in an augmented increase in PVR (PVR increased by greater than 50% to 0.140 +/- 0.024 mm Hg.min.ml-1.kg). However, when tone was elevated to a comparable degree in the systemic circulation with angiotensin infusion (SVR was elevated by 60%, from 0.432 +/- 0.065 to 0.065 to 0.634 +/- 0.113 mm Hg.min.ml-1.kg), the response to L-NAME was not augmented. Our data suggest that the role of EDNO in the modulation of the pulmonary circulation is dependent on the level of vasomotor tone, whereas its role in the systemic circulation is small and is independent of the level of vasomotor tone.  相似文献   

12.
Intrarenal arterial infusion of endothelin-1 (1, 3 and 10 ng/kg per min) reduced renal blood flow, urine flow rate and urinary Na+ excretion without affecting fractional Na+ excretion in anesthetized rabbits. An endothelin ET(A) receptor antagonist (R)2-[(R)-2-[(S)-2-[[1-(hexahydro-1H-azepinyl)]carbonyl]amino-4-me thyl-pentanoyl]amino-3-[3-(1-methyl-1H-indolyl)]propionyl]amino-3-(2-pyr idyl)propionic acid (FR139317, 1 microg/kg per min) attenuated the endothelin-1 (1 ng/kg per min)-induced renal responses. An endothelin ET(B) receptor antagonist N-cis 2,6-dimetylpiperidinocarbonyl-L-gamma-metylleucyl-D-1-met hoxycarbonyltryptophanyl-D-norleucine (BQ-788, 1 microg/kg per min) potentiated the endothelin-1-induced changes in renal blood flow, urine flow rate and urinary Na+ excretion. A nitric oxide (NO) synthase inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME, 50 microg/kg per min) also potentiated the endothelin-1-induced reductions in urine flow rate and urinary Na+ excretion but not the reduction in renal blood flow. Endothelin-1 reduced fractional Na+ excretion in the presence of BQ-788 or L-NAME. A spontaneous NO donor 1-hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene (30 ng/kg per min) slightly attenuated the antinatriuresis but not the vasoconstriction induced by endothelin-1. These results suggest that in the rabbit kidney in vivo endothelin ET(A) receptors mediate endothelin-1-evoked vasoconstriction and tubular Na+ reabsorption, that the concomitant stimulation of endothelin ET(B) receptors by endothelin-1 counteracts both the ET(A) receptor-mediated vascular and tubular actions, and that the tubular action, but not the vascular action, of endothelin-1 is also susceptible to changes in renal NO level.  相似文献   

13.
Angiotensin II is well known to have a cardiotoxic effects. However, it is still unclear whether exogenous angiotensin I or angiotensin II has a deleterious effect on myocardial ischemia-reperfusion injury. To examine this deleterious effects, we administered angiotensin I and angiotensin II to perfused hearts before ischemia, and measured creatine kinase (CK) release and cardiac function during subsequent reperfusion. Wistar Kyoto rats were used and the hearts were perfused by the Langendorff technique at a constant flow (10 ml/min). Seven hearts were perfused for 20 min and then subjected to 15 min of global ischemia (Control). In the experimental groups, during the 5 min before ischemia, we administered 100 ng/ml angiotensin I (Ang I; n = 9), 1 microgram/ml enalaprilat (ACEI; n = 5), both agents (ACEI + Ang I) (n = 6), or 10 ng/ml angiotensin II (Ang II; n = 6). The perfusates were then sampled to measure angiotensin II. After 15 min of ischemia, the hearts were reperfused with control perfusate. Throughout the 20 min of reperfusion, the effluent was collected to measure cumulative CK release. Angiotensin I increased coronary perfusion pressure (CPP) by 32 +/- 4 mmHg, however, the angiotension converting enzyme inhibitor inhibited the increase of CPP by angiotension I (11 +/- 1 mmHg) (p < 0.01). The contents of angiotensin II in the effluent in Ang I and Ang I + ACEI were 11.5 +/- 1.9 ng/ml and 4.0 +/- 0.5 ng/ml (p < 0.01). After 20 min of reperfusion, the left ventricular developed pressure was unchanged in all of the groups. CPP was also unchanged by ischemia in all of the groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
1. Although the actions of angiotensin II (Ang II) on renal haemodynamics appear to be mediated by activation of the AT1 receptor subtype, AT2 binding sites have also been evidenced in the adult kidney vasculature. As NO is known to mask part of the renal effects of vasoconstrictor drugs, we queried whether the Ang II-induced vasoconstrictions could occur via multiple receptor subtypes during inhibition of NO synthesis. We explored the effect of AT1 and AT2 receptor (AT-R) antagonists on Ang II-induced pressure increases during NO synthase or soluble guanylyl cyclase inhibition in rat isolated kidneys perfused in the presence of indomethacin at constant flow in a single-pass circuit. 2. In the absence of NO blockade, the AT1-R antagonist L-158809 (500 nM) antagonized the Ang II-induced vasoconstrictions, while the AT2-R antagonist PD-123319 (500 nM) had no effect. 3. Perfusing kidneys in the presence of either NO synthase inhibitors, L-NAME (100 microM) or L-NOARG (1 mM), or soluble guanylyl cyclase inhibitor, LY-83583 (10 microM), significantly increased both molar pD2 (from 9.40+/-0.25 to 10.36+/-0.11) and Emax values (from 24.9+/-3.1 to 79.9+/-4.9 mmHg) of the concentration-response curve for Ang II-induced vasoconstriction. 4. In the presence of L-NAME, 500 nM L158809 abolished the Ang II-induced vasoconstrictions whatever the concentration tested. On the other hand, 500 nM PD-123319 reversed the left shift of the concentration-response curve for Ang II (molar pD2 value 9.72+/-0.13) leaving Emax value unaffected (91.3+/-7.6 mmHg). 5. In the presence of L-NAME, the potentiated vasoconstriction induced by 0.1 nM and the augmented vasoconstriction induced by 10 nM Ang II were fully inhibited in a concentration-dependent manner by L-158809 (0.05-500 nM). By contrast, PD-123319 (0.5-500 nM) did not affect the 10 nM Ang II-induced vasoconstriction and concentration-dependently decreased the 0.1 nM Ang II-induced vasoconstriction plateauing at 65% inhibition above 5 nM antagonist. 6. Similar to PD-123319, during NO blockade the AT2-R antagonist CGP-42112A at 5 nM decreased by 50% the 0.1 nM Ang II-induced vasoconstriction and at 500 nM had no effect on 10 nM Ang II-induced vasoconstriction. 7. In conclusion, the renal Ang II-induced vasoconstriction, which is antagonized only by AT1-R antagonist in the presence of endogenous NO, becomes sensitive to both AT1- and AT2-R antagonists during NO synthesis inhibition. While AT1-R antagonist inhibited both L-NAME-potentiated and -augmented components of Ang II-induced vasoconstriction, AT2-R antagonists inhibited only the L-NAME-potentiated component.  相似文献   

15.
To compare the effects of a potent rat renin inhibitor peptide (RIP) and angiotensin-converting enzyme (ACE) inhibitor on the intrarenal and plasma renin-angiotensin systems, anesthetized Sprague-Dawley rats were treated with an infusion of vehicle, ramipril or graded doses of the rat RIP (acetyl-His-Pro-Phe-Val-statine-Leu-he-NH2) for 30 min. Kidney and plasma samples were processed rapidly, and angiotensin peptides were separated by high-pressure liquid chromatography before measurement by a double-antibody radioimmunoassay. Blood pressure fell identically, by approximately 15 mm Hg, after either the RIP or ACE inhibitor. Plasma Ang II was 83 +/- 20 fmol/ml in vehicle-treated rats and fell to 28 +/- 3 fmol/ml with ramipril (10 mg/kg), the dose-response zenith. Plasma Ang II was significantly lower, 9 +/- 2 fmol/ml, with the highest RIP dose used. Control renal tissue Ang II was 183 +/- 18 fmol/g, fell with ramipril to 56 +/- 6 and then fell to a similar level (47 +/- 10 fmol/g) after RIP. Ang I/Ang II ratios indicated the expected sharp drop in Ang I conversion after ramipril in plasma and tissue. RIP did not influence conversion rate in plasma but was associated with an unanticipated fall in Ang I conversion in renal tissue, perhaps reflecting local aspartyl protease inhibition, which contributes to normal Ang II formation. Also unanticipated was a rise in tissue Ang I concentration during RIP administration. Renin inhibition is more effective than ACE inhibition in blocking systemic Ang II formation, supporting studies suggesting that quantitatively important non-ACE-dependent pathways participate in Ang II formation.  相似文献   

16.
To elucidate whether and why glucose directly influences renin secretion, the effect of glucose on renin secretion was investigated in the rat. In an in vivo study, renin activity significantly (p<0.01) increased from the basal value of 7.6 +/- 1.4 to 14.2 +/- 3.2 ng Ang I/ml/hr (mean +/- SD) after intravenous glucose (1.0 g/kg, in 50% glucose solution ) injection. Propranolol (10.5 mg/kg) pretreatment partly abolished the increase in renin activity induced by glucose injection. In an in vitro study, the isolated kidneys of male Wistar rats (200-250 g) were perfused with a basal perfusing medium containing 5.5 mM glucose for 20 min, and then perfused with the medium containing 16.5 mM glucose, 27.5 mM glucose, 5.5 mM glucose + 22 mM mannitol, 27.5 mM glucose + 1 microM phentolamine, or 27.5 mM glucose + 1 microM propranolol for 10 min, respectively. Renin activity was significantly increased from a basal value of 8.1 +/- 4.5 to peak value of 17.9 +/- 3.0 ng Ang I/ml/hr (p<0.01) by 16.5 mM glucose, to 59.0 +/- 10.5 ng Ang I/ml/hr (p<0.005) by 27.5 mM glucose, and to 24.7 +/- 5.8 ng Ang I/ml/hr (p<0.01) by 5.5 mM glucose + 22 mM mannitol. The increase in renin activity in the kidney perfused with 27.5 mM glucose was significantly (p<0.005) higher than that with 16.5 mM glucose or that with 5.5 mM glucose + 22 mM mannitol. The 27.5 mM glucose-stimulated increase in renin activity was not changed by the addition of 1 microM phentolamine, while it was completely abolished by the addition of 1 microM propranolol. These results suggest that glucose has a direct stimulating effect on renin secretion probably through beta-adrenergic mechanisms in the rat.  相似文献   

17.
Losartan is the first angiotensin II type 1 (AT1) receptor antagonist to become available for the treatment of hypertension. However, recent reports have revealed several cases of losartan-induced bronchoconstriction. We investigated to determine the mechanism of losartan-induced bronchoconstriction, considering in particular the involvement of endogenous nitric oxide (NO). In this study, we examined the effects of losartan on airway obstruction and endogenous NO production using anesthetized guinea pigs and cultured airway epithelial cells. Five minutes after administration of angiotensin II (Ang II), the bronchoconstriction induced by acetylcholine was not changed. In contrast, Ang II in the presence of losartan caused a significant increase in the acetylcholine responsiveness. Pretreatment with L-N omega-nitroarginine-methylester (L-NAME) potentiated acetylcholine-induced bronchoconstriction 5 min after administration of Ang II, and L-arginine reversed this action of L-NAME on the acetylcholine responsiveness. Moreover, Ang II administration increased NO concentration in expired air (12.5 +/- 1.5 ppb for saline, 40 +/- 5 ppb for Ang II, p < 0.01), and losartan significantly inhibited Ang II-stimulated NO release (20 +/- 3.5 ppb) from guinea pig airway. In cultured airway epithelial cells, Ang II also increased NO release (160 +/- 25 nM), and the effect of this Ang II-induced NO release was significantly inhibited by pretreatment with losartan (25 +/- 8 nM, p < 0.01). These findings suggest that losartan-induced bronchoconstriction may result from inhibition of endogenous NO release in the airway.  相似文献   

18.
The interaction between constitutive nitric oxide and oxygen may depend on the degree of tissue oxygenation and may play a critical role in the pathophysiological response to endotoxaemia. We investigated if hyperoxia (100% O2) attenuated the systemic and pulmonary vasoconstriction and increased biosynthesis of thromboxane B2 (TXB2) and 6-keto-prostaglandin (PG) F1alpha induced by inhibition of nitric oxide synthase with NG-nitro-L-arginine-methyl-ester (L-NAME) in a porcine model of endotoxaemia. Twenty-two domestic, random source pigs, weighing 15.4 +/- 2.7 kg (mean +/- standard deviation) were the subjects of this study. Pigs were anaesthetized with isoflurane in 100% O2, orotracheally intubated and ventilated to maintain normocapnia, and then instrumented for haemodynamic monitoring. Following instrumentation, pigs were maintained at an end-tidal isoflurane concentration of 2%. Pigs were randomly assigned to treatment groups: saline + 30% O2 (Control, n = 6); Escherichia coli lipopolysaccharide (5 microg/kg/h from 1 to 2 h followed by 2 microg/kg/h from 2 to 5 h) + 30% O2 (LPS, n = 4); L-NAME (0.5 mg/kg/h, from 0 to 5 h) + LPS + 100% O2 (n = 6); and L-NAME + LPS + 30% O2 (n = 6). L-NAME and endotoxin significantly (P < 0.05) increased mean arterial pressure, mean pulmonary arterial pressure, and systemic and pulmonary vascular resistance index beginning at 90 min. When results were pooled across all time periods, mean arterial pressure and mean pulmonary arterial pressure were significantly higher in the L-NAME + LPS + 30% O2 group than all other groups, reflecting pulmonary and systemic vasoconstriction. Hyperoxia attenuated the L-NAME + LPS-induced increases in TXB2 and 6-keto-PGF1alpha concentrations at 90 and 120 min and 120 min, respectively, although the differences were not statistically significant. These results support the observation that nitric oxide synthase inhibition with L-NAME has deleterious haemodynamic effects in this model of endotoxaemia. The temporal attenuation of L-NAME-induced pulmonary and systemic vasoconstriction by hyperoxia suggested that the haemodynamic effects of acute endotoxaemia were in part influenced by the relative amounts of nitric oxide and oxygen present.  相似文献   

19.
A growing body of evidence supports the existence of a tissue-based renin-angiotensin system (RAS) in the vasculature, but the functional capacity of vascular RAS was not investigated in humans. In 28 normotensive healthy control subjects, the metabolism of angiotensins through vascular tissue was investigated in normal, low, and high sodium diets by the measurement of arterial-venous gradient of endogenous angiotensin (Ang) I and Ang II in two different vascular beds (forearm and leg), combined with the study of 125I-Ang I and 125I-Ang II kinetics. In normal sodium diet subjects, forearm vascular tissue extracted 36+/-6% of 125I-Ang I and 30+/-5% of 125I-Ang II and added 14.9+/-5.1 fmol x 100 mL(-1) x min(-1) of de novo formed Ang I and 6.2+/-2.8 fmol x 100 mL(-1) x min(-1) of Ang II to antecubital venous blood. Fractional conversion of 125I-Ang I through forearm vascular tissue was about 12%. Low sodium diet increased (P<.01) plasma renin activity, whereas de novo Ang I and Ang II formation by forearm vascular tissue became undetectable. Angiotensin degradation (33+/-7% for Ang I and 30+/-7% for Ang II) was unchanged, and vascular fractional conversion of 125I-Ang I decreased from 12% to 6% (P<.01). In high sodium diet subjects, plasma renin activity decreased, and de novo Ang I and Ang II formation by forearm vascular tissue increased to 22 and 14 fmol x 100 mL(-1) x min(-1), respectively (P<.01). Angiotensin degradation did not significantly change, whereas fractional conversion of 125I-Ang I increased from 12% to 20% (P<.01). Leg vascular tissue functional activities of RAS paralleled those of forearm vascular tissue both at baseline and during different sodium intake. These results provide consistent evidence for the existence of a functional tissue-based RAS in vascular tissue of humans. The opposite changes of plasma renin activity and vascular angiotensin formation indicate that vascular RAS is independent from but related to circulating RAS.  相似文献   

20.
Although a number of manipulations prior to or during the initiation phase of an acute renal injury will modify the degree of functional impairment, agents administered after the acute insult usually have been ineffective. In the present study, adenine nucleotides (AMP, ADP, or ATP) combined with magnesium chloride were infused after an ischemic renal injury. Twenty-four hours later: (1) rats that received no infusion or one of the components of the mixture alone had reduced CIn (355 +/- 40 microliter/min/100 g of body wt vs. 977 +/- 40 control value), decreased RBF (3550 +/- 205 microliter/min/100 g of body wt vs. 5095 +/- 171 control value), elevated FENa (0.65 +/- 0.10% vs. 0.17 +/- 0.04 control value), and diminished UOsm (862 +/- 110 mOsm/kg vs. 1425 +/- 132 control value); (2) rats given dopamine or phenoxybenzamine maintained low CIn (365 +/- 50) despite improved RBF (4678 +/- 222); (3) rats infused with either AMP, ADP, or ATP combined with magnesium chloride had markedly improved CIn (594 +/- 44, P < 0.01), increased RBF (4269 +/- 223, P < 0.01); normalized FENa (0.18 +/- 0.07%, P < 0.01), and improved UOsm (1201 +/- 106 mOsm/kg, P < 0.05). In animals given no infusion or only magnesium chloride, ultrastructural studies demonstrated focal cellular necrosis and marked generalized tubular cell and mitochondrial swelling, whereas rats infused with ATP and magnesium chloride had fewer ultrastructural changes with better preservation of cellular morphology. Rats treated with ATP and magnesium chloride had improved CIn despite ischemic periods of 30, 45, and 60- min; and the degree of improvement was directly related to the quantity of ATP and magnesium chloride administered. The cellular content of exogenously administered ATP was 2.5 times greater in previously ischemic kidneys than in nonischemic kidneys. The data indicate that adenine nucleotides combined with magnesium chloride when infused after the initiation of acute renal failure significantly improve both CIn and tubular function and suggest that these agents effectively enhance recovery following an ischemc renal insult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号