首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Low cost removal of reactive dyes using wheat bran   总被引:1,自引:0,他引:1  
In this study, the adsorption of Reactive Blue 19 (RB 19), Reactive Red 195 (RR 195) and Reactive Yellow 145 (RY 145) onto wheat bran, generated as a by-product material from flour factory, was studied with respect to initial pH, temperature, initial dye concentration, adsorbent concentration and adsorbent size. The adsorption of RB 19, RR 195 and RY 145 onto wheat bran increased with increasing temperature and initial dye concentration while the adsorbed RB 19, RR 195 and RY 145 amounts decreased with increasing initial pH and adsorbent concentration. The Langmuir and Freundlich isotherm models were applied to the experimental equilibrium data depending on temperature and the isotherm constants were determined by using linear regression analysis. The monolayer covarage capacities of wheat bran for RB 19, RR 195 and RY 145 dyes were obtained as 117.6, 119.1 and 196.1 mg/g at 60 degrees C, respectively. It was observed that the reactive dye adsorption capacity of wheat bran decreased in the order of RY 145>RB 19>RR 195. The pseudo-second order kinetic and Weber-Morris models were applied to the experimental data and it was found that both the surface adsorption as well as intraparticle diffusion contributed to the actual adsorption processes of RB 19, RR 195 and RY 145. Regression coefficients (R2) for the pseudo-second order kinetic model were higher than 0.99. Thermodynamic studies showed that the adsorption of RB 19, RR 195 and RY 145 dyes onto wheat bran was endothermic in nature.  相似文献   

2.
Batch adsorption studies were carried out for the sorption of C.I. Reactive Black 5, a reactive dye, onto high lime fly ash, obtained from Soma Thermal Power Plant (Turkey), to be low cost adsorbent. The effect of various experimental parameters such as contact time, adsorbent dose and initial dye concentration were investigated. Determination of the adsorption equilibrium concentrations was determined by UV-vis spectrophotometry analytical method. Equilibrium data were fitted to the Freundlich and Langmuir isotherm equations and the equilibrium data were found to be well represented by the Freundlich isotherm equation. The adsorption kinetics of C.I. Reactive Black 5 onto high lime fly ash were also studied to characterize of the surface complexation reaction. A pseudo-second-order mechanism has been developed to predict the rate constant of the adsorption, the equilibrium capacity and initial adsorption rate with the effect of initial concentration. A single-stage batch adsorber design of the adsorption of C.I. Reactive Black 5 onto high lime fly ash has been studied based on the Freundlich isotherm equation.  相似文献   

3.
Adsorption of reactive dyes on calcined alunite from aqueous solutions   总被引:7,自引:0,他引:7  
An attempt to alleviate the problem caused by the presence of reactive dyes in textile effluents was undertaken. Since alunite is a very abundant and inexpensive, we decided to experiment with it as a potential adsorbent for a certain type of the supracited pollutants used in cellulose fibers dyeing. The adsorption of Reactive Blue 114 (RB114), Reactive Yellow 64 (RY64) and Reactive Red 124 (RR124) by calcined alunite was studied by varying parameters such as the calcination temperature and time, particle size, pH, agitation time and dye concentration. Acidic pH was favorable for the adsorption of RB114 and alkaline pH was favorable to both RY64 and RR124. The equilibrium data fit the Langmuir isotherm. The adsorption capacities were found to be 170.7, 236 and 153 mg dye per gram of calcined alunite for RB114, RY64 and RR124, respectively. The pseudo first- and second-order kinetic models were used to describe the kinetic data, and the rate constants were evaluated. The experimental data were fitted by the second-order kinetic model, which indicates that chemicalsorption is the rate limiting step, inside of mass transfer.  相似文献   

4.
Sonochemical treatment of fly ash for dye removal from wastewater   总被引:2,自引:0,他引:2  
Fly ash samples modified by NaOH solution and sonochemical treatment were tested for a basic dye (methylene blue) adsorption in aqueous solution. It is found that sonochemical treatment of fly ash can significantly increase the adsorption capacity depending on the concentration of NaOH and treatment time. The untreated FA and the sonochemically treated sample exhibits adsorption capacity at 6 x 10(-6)mol/g and 1.2 x 10(-5)mol/g at 30 degrees C, respectively. The adsorption tests show that solution pH and adsorption temperature also influence the adsorption behaviour. The adsorption isotherms can be fitted by Langmuir and Freudlich models, while the two-site Langmuir heterogeneous model will present the best result.  相似文献   

5.
Dye adsorption on unburned carbon: kinetics and equilibrium   总被引:2,自引:0,他引:2  
Unburned carbon in fly ash is an important by-product from coal combustion. In this investigation, unburned carbon has been separated from fly ash and been employed as a low cost adsorbent for a basic dye adsorption (Rhodamine B) in aqueous solution. Adsorption isotherm and kinetics of adsorption have been investigated using batch experiments. It is found that dye adsorption capacity depends on initial concentration, pH of solution, and temperature. The adsorption isotherm can be described by Langmuir model and the adsorption capacity of Rhodamine B at 30, 40, and 50 degrees C can reach 9.7 x 10(-5), 1.14 x 10(-4), and 1.5 x 10(-4)mol g(-1), respectively. The pseudo first- and second-order kinetic models have been employed to fit the dynamic adsorption. It is found that the dynamic adsorption follows the pseudo second-order model. Thermodynamic calculations indicate that the adsorption is endothermic reaction with DeltaH degrees at 25 kJ mol(-1).  相似文献   

6.
Adsorption of anionic dyes on ammonium-functionalized MCM-41   总被引:1,自引:0,他引:1  
Investigations were conducted in a batch reactor system to study the adsorption behavior of four anionic dyes (Methyl orange (MO), Orange IV (OIV), Reactive brilliant red X-3B (X-3B), and Acid fuchsine (AF)) on ammonium-functionalized MCM-41 (NH(3)(+)-MCM-41) from aqueous medium by varying the parameters such as contact time, initial dye concentration, pH and competitive anions. Dye adsorption was broadly independent of initial dye concentration. The intraparticle diffusion model was the best in describing the adsorption kinetics for the four anionic dyes on NH(3)(+)-MCM-41. The adsorption data for the four dyes were well fitted with the Langmuir model. The electrostatic interaction was considered to be the main mechanism for the dye adsorption. Finally, it was observed that the anion of soft acid inhibited the adsorption capacity significantly.  相似文献   

7.
Adsorption kinetic and equilibrium studies of three reactive dyes namely, Remazol Brillant Blue (RB), Remazol Red 133 (RR) and Rifacion Yellow HED (RY) from aqueous solutions at various initial dye concentration (100–500 mg/l), pH (2–8), particle size (45–112.5 μm) and temperature (293–323 K) on fly ash (FA) were studied in a batch mode operation. The adsorbent was characterized with using several methods such as SEM, XRD and FTIR. Adsorption of RB reactive dye was found to be pH dependent but both RR and RY reactive dyes were not. The result showed that the amount adsorbed of the reactive dyes increased with increasing initial dye concentration and contact time. Batch kinetic data from experimental investigations on the removal of reactive dyes from aqueous solutions using FA have been well described by external mass transfer and intraparticle diffusion models. It was found that external mass transfer and intraparticle diffusion had rate limiting affects on the removal process. This was attributed to the relatively simple macropore structure of FA particles. The adsorption data fitted well with Langmuir and Freundlich isotherm models. The optimum conditions for removal of the reactive dyes were 100 mg/l initial dye concentration, 0.6 g/100 ml adsorbent dose, temperature of 293 K, 45 μm particle size, pH 6 and agitation speed of 250 rpm, respectively. The values of Langmuir and Freundlich constants were found to increase with increasing temperature in the range 135–180 and 15–34 mg/g for RB, 47–86 and 1.9–3.7 mg/g for RR and 37–61 and 3.0–3.6 mg/g for RY reactive dyes, respectively. Different thermodynamic parameters viz., changes in standard free energy, enthalpy and entropy were evaluated and it was found that the reaction was spontaneous and endothermic in nature.  相似文献   

8.
Fly ash was modified by hydrothermal treatment using NaOH solutions under various conditions for zeolite synthesis. The XRD patterns are presented. The results indicated that the samples obtained after treatment are much different. The XRD profiles revealed a number of new reflexes, suggesting a phase transformation probably occurred. Both heat treatment and chemical treatment increased the surface area and pore volume. It was found that zeolite P would be formed at the conditions of higher NaOH concentration and temperature. The treated fly ash was tested for adsorption of heavy metal ions and dyes in aqueous solution. It was shown that fly ash and the modified forms could effectively absorb heavy metals and methylene blue but not effectively adsorb rhodamine B. Modifying fly ash with NaOH solution would significantly enhance the adsorption capacity depending on the treatment temperature, time, and base concentration. The adsorption capacity of methylene blue would increases with pH of the dye solution and the sorption capacity of FA-NaOH could reach 5 x 10(-5) mol/g. The adsorption isotherm could be described by the Langmuir and Freundlich isotherm equations. Removal of copper and nickel ions could also be achieved on those treated fly ash. The removal efficiency for copper and nickel ions could be from 30% to 90% depending on the initial concentrations. The increase in adsorption temperature will enhance the adsorption efficiency for both heavy metals. The pseudo second-order kinetics would be better for fitting the dynamic adsorption of Cu and Ni ions.  相似文献   

9.
The purpose of the study described in this paper was to compare the removal of Cr(VI) and Cd(II) from an aqueous solution using two different Turkish fly ashes; Afsin-Elbistan and Seyitomer as adsorbents. The influence of four parameters (contact time, solution pH, initial metal concentration in solution and ash quality) on the removal at 20+/-2 degrees C was studied. Fly ashes were found to have a higher adsorption capacity for the adsorption of Cd(II) as compared to Cr(VI) and both Cr(VI) and Cd(II) required an equilibrium time of 2h. The adsorption of Cr(VI) was higher at pH 4.0 for Afsin-Elbistan fly ash (25.46%) and pH 3.0 for Seyitomer fly ash (30.91%) while Cd(II) was adsorbed to a greater extent (98.43% for Afsin-Elbistan fly ash and 65.24% for Seyitomer fly ash) at pH 7.0. The adsorption of Cd(II) increased with an increase in the concentrations of these metals in solution while Cr(VI) adsorption decreased by both fly ashes. The lime (crystalline CaO) content in fly ash seemed to be a significant factor in influencing Cr(VI) and Cd(II) ions removal. The linear forms of the Langmuir and Freundlich equations were utilised for experiments with metal concentrations of 55+/-2mg/l for Cr(VI) and 6+/-0.2mg/l for Cd(II) as functions of solution pH (3.0-8.0). The adsorption of Cr(VI) on both fly ashes was not described by both the Langmuir and Freundlich isotherms while Cd(II) adsorption on both fly ashes satisfied only the Langmuir isotherm model. The adsorption capacities of both fly ashes were nearly three times less than that of activated carbon for the removal of Cr(VI) while Afsin-Elbistan fly ash with high-calcium content was as effective as activated carbon for the removal of Cd(II). Therefore, there are possibilities for use the adsorption of Cd(II) ions onto fly ash with high-calcium content in practical applications in Turkey.  相似文献   

10.
The reuse of dried activated sludge for adsorption of reactive dye   总被引:3,自引:0,他引:3  
Adsorption processes are alternative effective methods for removal of textile dyes from aqueous solutions. The adsorption ability of adsorbent affects by physico-chemical environment for this reason in this paper effect of initial pH, dye concentrations, temperature and dye hydrolyzation were determined in a batch system for removal of reactive dye by dried activated sludge. The Langmuir isotherm model was well described of adsorption reactive dye and maximum monolayer adsorption capacity (at pH 2) of activated sludge was determined as 116, 93 and 71mgg(-1) for 20 degrees , 35 degrees and 50 degrees C, respectively. Initial pH 2, 20 degrees C and 30min contact time are suitable for removal of reactive dyes from aqueous solutions. Activated sludge was characterized by FT-IR analysis and results showed that active sludge has different functional groups and functional groups of activated sludge are able to react with dye molecules in aqueous solution. The pseudo first-order, second-order and intraparticle diffusion kinetics were used to describe the kinetic data. The pseudo second-order kinetic model was fit well over the range of contact times and also an intra particle diffusion kinetic model was fit well but in the first 30min. The dye hydrolyzation was affected adsorption capacity of biomass and adsorption capacity of biomass decreased with dye hydrolyzation from 74 to 38mgg(-1).  相似文献   

11.
In this paper, the potential of two low-cost adsorbents such as sunflower seed shells (SS) and mandarin peelings (MP) in the removal of the synthetic anionic dye Reactive Black 5 (RB5) from aqueous solutions was investigated. SS led to a percentage of dye removal higher than MP (85% and 71% after 210min, respectively, for an initial RB5 concentration of 50mgL(-1) and an initial pH of 2.0). The rate of adsorption followed a pseudo-second-order kinetic model and the intra-particle diffusion was found to be the rate-controlling stage. In addition, the equilibrium data fitted well both the Freundlich and multilayer adsorption isotherm equations indicating the heterogeneity of the adsorbent surface. This was also corroborated by the SEM photographs. On the whole, the results in this study indicated that SS were very attractive materials for removing anionic dyes from dyed effluents.  相似文献   

12.
Photocatalytic reduction of Cr(VI) on the new hetero-system CuAl2O4/TiO2   总被引:1,自引:0,他引:1  
A magnetic adsorbent, amine-functionalized silica magnetite (NH(2)/SiO(2)/Fe(3)O(4)), has been synthesized to behave as an anionic or cationic adsorbent by adjusting the pH value of the aqueous solution to make amino groups protonic or neutral. NH(2)/SiO(2)/Fe(3)O(4) were used to adsorb copper ions (metal cation) and Reactive Black 5 (RB5, anionic dye) in an aqueous solution in a batch system, and the maximum adsorption were found to occur at pH 5.5 and 3.0, respectively. The adsorption equilibrium data were all fitted the Langmuir isotherm equation reasonably well, with a maximum adsorption capacity of 10.41 mg g(-1) for copper ions and of 217 m g g(-1) for RB5. A pseudo-second-order model also could best describe the adsorption kinetics, and the derived activation energy for copper ions and RB5 were 26.92 kJ mol(-1) and 12.06 kJ mol(-1), respectively. The optimum conditions to desorb cationic and anionic adsorbates from NH(2)/SiO(2)/Fe(3)O(4) were provided by a solution with 0.1M HNO(3) for copper ions and with 0.05 M NaOH for RB5.  相似文献   

13.
李北罡  王敏 《材料导报》2018,32(10):1606-1611, 1622
粉煤灰(Fly ash,FA)经高温焙烧制得活化FA(Activated FA,AFA),又经溶液反应引入少量Fe和壳聚糖(Chitosan,CTS)制得Fe/CTS/AFA复合材料,将其直接用于水体中直接湖蓝5B(Direct sky blue 5B,DSB 5B)和活性翠蓝KN-G(Reactive turquoise blue KN-G,RTB KN-G)染料的吸附,通过研究影响吸附的主要因素、吸附动力学和等温吸附,并结合材料的FT-IR分析,详细探讨了材料的吸附性能。结果表明,水体酸度是影响吸附剂性能的最主要因素。当吸附剂投加量为0.1g、溶液pH值为2.0时,于25℃下吸附60min即可达吸附平衡,Fe/CTS/AFA对DSB 5B和RTB KN-G具有很强的吸附能力,吸附量分别可达635mg/g和906mg/g,比FA分别增大了31.6倍和15.3倍。吸附过程均能用准二级吸附动力学方程精确描述,等温吸附数据完全符合Langmuir模型。热力学参数吸附自由能变的负值、焓变和熵变为正值表明Fe/CTS/AFA对DSB 5B的吸附为界面上有序性降低的自发吸热过程。吸附饱和RTB KN-G的Fe/CTS/AFA可用0.01mol/L NaOH溶液再生,可至少重复使用三次。FT-IR结构分析表明Fe/CTS/AFA已成功制得,并且对高浓度染料废水具有高效净化能力。  相似文献   

14.
The nanoparticles of templated crosslinked chitosan, ECH-RB5 and ECH-3R, were prepared through the imprinting process using Remazol Black 5 (RB5) and Remazol Brilliant Orange 3R (3R) dyes, respectively, as templates and ECH as a crosslinker. The nanoparticles exhibited significantly higher adsorption capacities of the dyes than other nanoparticles formed without a dye template and with three crosslinkers (ECH, GLA, and EGDE). The adsorption of the dyes on the nanoparticles was affected by the initial pH, dye concentration, and temperature. The results were in accordance with the second-order and the Langmuir adsorption models. Meanwhile, the E values of the dyes calculated using the Dubinnin-Radushkevich model revealed that the adsorption process may be due to the dual nature of the process, physisorption and chemisorption, and that adsorption was predominant in the chemisorption process. The adsorption processes in the nanoparticles were spontaneous and exothermic. Moreover, competition adsorption through analysis of the intraparticle diffusion model apparently favored the 3R dye more than the RB5 dye on the nanoparticles in mixture solution B. The nanoparticles for the adsorption of the dyes were regenerated efficiently through the alkaline solution and were then reused for dye removal.  相似文献   

15.
In this work, an absorbent consisting of the maleic anhydride-modified cellulose beads combined with alkali-treated diatomite (MCDBs) was prepared in an attempt to remove basic dyes. An appropriate amount of calcium carbonate was added during the formation of MCDBs to increase the pore structure under an acidic condition. The synthesized MCDBs were characterized with FT-IR, TGA, and BET. The degree of carboxylation of MCDBs was quantified using a polyelectrolyte titration method. The removal of basic dyes such as methylene blue (MB) and methyl violet (MV) from aqueous solution was systematically investigated. The influence of pH, shaking time, and temperature on the removal process was identified. The results indicated that the MCDBs had a strong adsorption capacity toward basic dyes. The adsorption capacity increased from 51.6 to 116.6 mg/g for MB, depending on the initial concentration of the dye. A similar trend was also found for MV, i.e., adsorption increased from 30.5 to 61.1 mg/g. The experimental data fitted two kinetic models; the results demonstrated that the adsorption of MB and MV onto the MCDBs fits the pseudo-second-order model very well. The removal efficiencies of the basic dyes under the optimal conditions were up to 97.5 %. The adsorption data were also fitted using Langmuir, Freundlich, and Temkin isotherms, separately. It was found that the adsorption process for the basic dyes was better described by the Langmuir isotherm model.  相似文献   

16.
The objective of this study was to compare two different Turkish fly ashes (Afsin-Elbistan and Seyitomer) for their ability to remove nickel [Ni(II)], copper [Cu(II)] and zinc [Zn(II)] from an aqueous solution. The effect of contact time, pH, initial metal concentration and fly ash origin on the adsorption process at 20+/-2 degrees C were studied. Batch kinetic studies showed that an equilibrium time of 2h was required for the adsorption of Ni(II), Cu(II) and Zn(II) on both the fly ashes. The maximum metal removal was found to be dependent on solution pH (7.0-8.0 for Ni(II), 5.0-6.0 for Cu(II) and 6.0-7.0 for Zn(II)) for each type of fly ash. With an increase in the concentrations of these metals, the adsorption of Ni(II) and Zn(II) increased while the Cu(II) adsorption decreased on both the fly ashes. Adsorption densities for the metal ions were Zn(II)>Cu(II)>Ni(II) for both the fly ashes. The effectiveness of fly ash as an adsorbent improved with increasing calcium (CaO) content. Adsorption data in the range of pH values (3.0-8.0) using Ni(II) and Cu(II) concentrations of 25+/-2mg/l and Zn(II) concentration of 30+/-2mg/l in solution were correlated using the linear forms of the Langmuir and Freundlich equations. The adsorption data were better fitted to the Langmuir isotherm since the correlation coefficients for the Langmuir isotherm were higher than that for the Freundlich isotherm. The fly ash with high calcium content (Afsin-Elbistan) was found to be a metal adsorbent as effective as activated carbon and, therefore, there are good prospects for the adsorptions of these metals on fly ash with high calcium content in practical applications in Turkey.  相似文献   

17.
The adsorption of reactive dye (Reactive Red 189) from aqueous solutions on cross-linked chitosan beads was studied in a batch system. The equilibrium isotherms at different particle sizes (2.3-2.5, 2.5-2.7 and 3.5-3.8mm) and the kinetics of adsorption with respect to the initial dye concentration (4320, 5760 and 7286 g/m(3)), temperature (30, 40 and 50 degrees C), pH (1.0, 3.0, 6.0 and 9.0), and cross-linking ratio (cross-linking agent/chitosan weight ratio: 0.2, 0.5, 0.7 and 1.0) were investigated. Langmuir and Freundlich adsorption models were applied to describe the experimental isotherms and isotherm constants. Equilibrium data fitted very well to the Langmuir model in the entire saturation concentration range (0-1800 g/m(3)). The maximum monolayer adsorption capacities obtained from the Langmuir model are very large, which are 1936, 1686 and 1642 g/kg for small, mediumand large particle sizes, respectively, at pH 3.0, 30 degrees C, and the cross-linking ratio of 0.2. The pseudo first- and second-order kinetic models were used to describe the kinetic data, and the rate constants were evaluated. The experimental data fitted well to the second-order kinetic model, which indicates that the chemical sorption is the rate-limiting step, instead of mass transfer. The initial dye concentration and the solution pH both significantly affect the adsorption capacity, but the temperature and the cross-linking ratio are relatively minor factors. An increase in initial dye concentration results in the increase of adsorption capacity, which also increases with decreasing pH. The activation energy is 43.0 kJ/mol for the adsorption of the dye on the cross-linked chitosan beads at pH 3.0 and initial dye concentration 3768 g/m(3).  相似文献   

18.
Jute stick powder (JSP) has been found to be a promising material for adsorptive removal of congo red (C.I. 22120) and rhodamine B (C.I. 45170) from aqueous solutions. Physico-chemical parameters like dye concentration, solution pH, temperature and contact time have been varied to study the adsorption phenomenon. Favorable adsorption occurs at around pH 7.0 whereas temperature has no significant effect on adsorption of both the dyes. The maximum adsorption capacity has been calculated to be 35.7 and 87.7mg/g of the biomass for congo red and rhodamine B, respectively. The adsorption process is in conformity with Freundlich and Langmuir isotherms for rhodamine B whereas congo red adsorption fits well to Langmuir isotherm only. In both the cases, adsorption occurs very fast initially and attains equilibrium within 60min. Kinetic results suggest the intra-particle diffusion of dyes as rate limiting step.  相似文献   

19.
Mahogany sawdust was used to develop an effective carbon adsorbent. This adsorbent was employed for the removal of direct dyes from spent textile dyeing wastewater. The experimental data were analysed by the Langmuir and Freundlich models of adsorption. Equilibrium data fitted well with the Langmuir model. The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation. The equilibrium adsorption capacity of the sawdust carbon was determined with the Langmuir equation as well as the pseudo-second-order rate equation and found to be >300 mg dye per gram of the adsorbent. The most ideal pH for adsorption of direct dyes onto sawdust carbon was found to be 3 and below. The results indicate that the Mahogany sawdust carbon could be employed as a low cost alternative to commercial activated carbon in the removal of dyes from wastewater.  相似文献   

20.
This study utilizes canola stalks (CS), an agro-residue, as a biosorbent to remove two different dyes, namely Acid Orange 7 (AO7) and Remozol Black 5 (RB5) from aqueous solutions. The effects of operational parameters on the efficiency of dye removal including pH, adsorbent mass, initial dye concentration and contact time have been investigated. For both tested dyes, the maximum absorption capacity was reached at initial pH 2.5 and 120 min contact time. The results showed that the absorption of both dyes depended on the pH of milieu, temperature, dye and CS concentrations. Freundlich and Langmuir models were used to analyze the obtained experimental data. The isotherms are found to be linear over the entire concentration range for both dyes. The highest value of linear correlation coefficients for AO7 (0.9926) and RB5 (0.9882) showed that the Langmuir is the best model to fit the experimental data. Kinetic study of absorption was done applying the pseudo first-order and the pseudo second-order equations. Absorption of both dyes could be well predicted by the pseudo second-order equation. The obtained results are very promising since: (i) high levels of dye removal (> 90%) were achieved with low contact times biosorbent/dye (less than 20 min contact); and (ii) the whole CS can be successfully used as biosorbent of AO7 and RB5 dyes in aqueous solution without needing any chemical modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号