共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
基于神经网络的广义非线性预测PID控制 总被引:3,自引:0,他引:3
针对一些复杂的非线性系统用基于线性模型的预测控制器控制效果不理想的问题,本文提出在利用前馈网络对非线性系统建模的基础上,对系统输出实现递推多步预测,并且结合非线性PID,用另一前馈神经网络作为控制器,实现对非线性系统的控制。经网络的在线辨识采用梯度法,仿真实验验证了方法的有效性。 相似文献
5.
6.
7.
针对强耦合、多变量的非线性系统,提出了一种基于Caputo分数阶微分优化的BP-PID解耦控制算法。首先,应用Caputo定义的分数阶思想设计分数阶梯度下降算法,并将其应用到BP-PID控制系统,以实现多变量耦合系统的解耦控制;其次,通过测试的二维变量函数验证所提算法的收敛性;最后,在浸没式电极锅炉耦合模型中使用分数阶梯度下降算法优化的BP-PID算法,并与基于传统梯度下降算法的BP-PID算法进行对比。实验结果表明,所提算法提高了BP-PID解耦控制器的收敛速度,并且加快了响应速度,减少了超调量,缩短了调节时间。 相似文献
8.
本文以典型的机电耦合系统--数控伺服进给系统为分析研究对象,针对数控伺服进给系统的多输入多输出不确定非线性和强机电耦合性,探索机电耦合模型的解耦控制方法,提出了基于神经网络的解耦控制,经仿真验证能得到较好的解耦控制效果,且算法原理简单,易于实现。 相似文献
9.
对一类具有未建模动态的严格反馈非线性系统,提出一种自适应神经网络动态面控制方案.该方案将动态面控制方法扩展到具有未建模动态的严格反馈非线性系统的控制器设计中,拓展了动态面控制方法的应用范围.利用动态面控制方法引入的紧集来处理未建模动态对于系统的影响.利用Young's不等式,提出两种自适应参数调节方案.与现有研究结果相比,有效地减少了可调参数的数目,放宽了动态不确定性的假设,无需虚拟控制增益系数导数的信息.通过理论分析,证明了闭环控制系统是半全局一致终结有界的,且跟踪误差收敛到原点的一个小邻域内. 相似文献
10.
将神经网络和PID控制相结合,提出了一种基于对角递归神经网络整定的PID控制策略,并将其应用于交流伺服系统的控制.利用对角递归神经网络在线自适应调整PID控制器的参数,从而使系统的静态和动态性能指标较为理想.实验结果表明.基于对角递归神经网络整定的PID控制的交流伺服系统具有响应速度快、稳态精度高和鲁棒性强等特点. 相似文献
11.
12.
吴锦娃;刘勇华;苏春翌;鲁仁全 《自动化学报》2024,50(5):1015-1023
针对一类具有不确定控制增益的严格反馈系统, 提出一种基于命令滤波反推技术的自适应神经网络控制方法. 该方法采用神经网络对系统中的未知非线性函数进行逼近, 并引入命令滤波反推技术克服“计算膨胀”的问题. 与现有的命令滤波反推控制文献相比, 本文通过构造自适应误差补偿系统, 同时消除滤波器产生的边界层误差和不确定控制增益对系统性能造成的影响. 仿真结果验证了所提控制方法的有效性. 相似文献
13.
The finite-time command filter tracking control for a class of nonstrictly feedback nonlinear systems with unmodeled dynamics and full-state constraints is investigated in this paper. The hyperbolic tangent function is used as a nonlinear mapping technique to solve the obstacle of the full-state constraints. A new adaptive finite time control method is proposed through command filtering reverse engineering, and the shortcomings of the dynamic surface control (DSC) method are overcome by the error compensation mechanism. Dynamic signal is designed to handle dynamical uncertain terms. Normalization signal is designed to handle input unmodeled dynamics. Unknown nonlinear functions are approximated by radial basis function neural networks. Based on the Lyapunov stability theory, it is proved that all signals in the closed-loop system are semi-globally consistent and finally bounded and the output tracking error converges in finite time. Two numerical examples are utilized to verify the effectiveness of the proposed control approach. 相似文献
14.
对一类控制增益符号未知且执行器有故障的输出反馈多输入单输出非线性系统,提出了一种后推容错控制方案.该方案在系统状态不可量测的情况下,利用Nussbaum函数处理符号未知的常数增益,并通过构造K-滤波器来估计了系统不可量测的状态.在容错控制器设计过程中,引入变能量函数来处理利用虚拟控制律所无法抵消的部分.与现有研宄成果相比,放宽了未知增益需要上下界均为已知的假设条件.最后,通过选取合适的李雅普诺夫函数,证明了闭环系统所有信号半全局一致终结有界,且跟踪误差收敛到原点的一个小邻域内.仿真结果表明了所提控制方法的有效性. 相似文献
15.
For a class of systems with unmodeled dynamics, robust adaptive stabilization problem is considered in this paper. Firstly, by a series of coordinate changes, the original system is re-parameterized. Then, by introducing a reduced-order observer, an error system is obtained. Based on the system, a reduced-order adaptive backstepping controller design scheme is given. It is proved that all the signals in the adaptive control system are globally uniformly bounded, and the regulation error converges to zero asymptotically. Due to the order deduction of the controller, the design scheme in this paper has more practical values. A simulation example further demonstrates the efficiency of the control scheme. 相似文献
16.
Yang Liu Huaguang Zhang Yingchun Wang Hongjing Liang 《IEEE/CAA Journal of Automatica Sinica》2022,9(9):1627-1638
This paper investigates adaptive containment control for a class of fractional-order multi-agent systems (FOMASs) with time-varying parameters and disturbances. By using the bounded estimation method, the difficulty generated by the time-varying parameters and disturbances is overcome. The command filter is introduced to solve the complexity problem inherent in adaptive backstepping control. Meanwhile, in order to eliminate the effect of filter errors, a novel distributed error compensating scheme is constructed, in which only the local information from the neighbor agents is utilized. Then, a distributed adaptive containment control scheme for FOMASs is developed based on backstepping to guarantee that the outputs of all the followers are steered to the convex hull spanned by the leaders. Based on the extension of Barbalat’s lemma to fractional-order integrals, it can be proven that the containment errors and the compensating signals have asymptotic convergence. Finally, three simulation examples are given to show the feasibility and effectiveness of the proposed control method. 相似文献
17.
18.
This paper addresses the problem of tracking control for a class of uncertain nonstrict‐feedback nonlinear systems subject to multiple state time‐varying delays and unmodeled dynamics. To overcome the design difficulty in system dynamical uncertainties, radial basis function neural networks are employed to approximate the black‐box functions. Novel continuous functions that deal with whole states uncertainties are introduced in each step of the adaptive backstepping to make the controller design feasible. The robust problem caused by unmodeled dynamics when constructing a stable controller is solved by employing an auxiliary signal to regulate its boundedness. A novel Lyapunov‐Krasovskii functional is developed to compensate for the delayed nonlinearity without requiring the priori knowledge of its upper bound functions. On the basis of the proposed robust adaptive neural controller, all the closed‐loop signals are semiglobal uniformly ultimately bounded with good tracking performance. 相似文献
19.
In this study, a command-filtered sensor-based backstepping controller is proposed for small unmanned aerial vehicles (UAVs) with actuator dynamics. The command filter is introduced to prompt the virtual control law to be limited in a certain range and the corresponding state to subsequently be restricted to a certain area. When using the sensor-based backstepping recursive method, precise models of the UAVs are not required because the controller is not sensitive to the external disturbance. The actuator dynamics are compensated without prior knowledge of the mathematical model of the executing agency. Besides, a robust compensator is developed for the virtual control law of the first subsystem of the UAV, which shows strong robustness against the uncertainties of the aerodynamic coefficients and external disturbances. Moreover, the closed-loop system is proven stable in the sense that the signals are bounded. A numerical simulation is carried out to verify the effectiveness of the developed controller. 相似文献