首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Advanced Powder Technology》2021,32(9):3259-3267
Collisions between particles and the wall covered by a liquid layer play an important role in many different industrial processes (e.g., chemical, pharmaceutical, and transportation). Understanding the rebound motion law of the collision between particles and the wall covered by a liquid layer is vital to ensure the high efficiency of processes such as wet granulation and fluid catalytic cracking. In the present study, we investigated the influence of different collision angles on the liquid bridge geometry, particle motions, particle energy, and other collision details based on the oblique collisions between particles and the target plate covered by a liquid layer. Results showed that the collision angle of particles has a great effect on the liquid bridge geometry. Moreover, the liquid bridge caused by different collision angles initially increases the particle deflection angle difference and then decreases, and this influence gradually increases with the increase of the collision angle. In addition, the collision angle greatly affects the particle’s energy.  相似文献   

2.
The local bubble phase holdup and vertical bubble length in three phase fluidized beds and the beds of floating bubble breaker have been studied in a 15.2 cm-ID pyrex glass column

The effects of liquid velocity (1-9 cm/s), gas velocity (2-12 cm/s), particle size (1-6 mm) and the volume ratio of the floating bubble breaker to solid particles (0-30 %) on bubble properties at the different bed heights have been determined

The bubble phase holdup increased with gas velocity, volume ratio of floating bubble breaker to solids and particle size along the bed height but decreased with liquid velocity. The vertical bubble length increased with gas velocity along the bed height but decreased with liquid velocity, particle size and the volume ratio of floating bubble breaker to solid particles

The local bubble phase holdup and the vertical bubble length have been correlated with the experimental variables as well as dimension less groups of Froude and Weber numbers.  相似文献   

3.
《Advanced Powder Technology》2014,25(3):1031-1037
Dense-phase high-density fluidized bed has received considerable attention worldwide due to the urgent need for an efficient dry separation technology. This study on magnetite particle attrition model and size distribution change rule in a dense-phase gas–solid fluidized bed for dry beneficiation analyzes the complex process of magnetite particle attrition and fine particle generation. A model of magnetite particle attrition rate is established, with the particle attrition rate leveling off gradually with the attrition time in the dense-phase gas–solid fluidized bed. Magnetite particle attrition in the dense-phase gas–solid fluidized bed is consistent with Rittinger’s surface theory, where the change in surface area of magnetite particles is proportional to the total excess kinetic energy consumed and the total attrition time. An attrition experiment of magnetite particles is conducted in a laboratory-scale dense-phase gas–solid fluidized bed for dry beneficiation.  相似文献   

4.
Bubble and particle motion behaviors are investigated experimentally in a gas solid fluidized bed with liquid spray on the side wall. The particles used in the experiment are classified as Geldart B particles. The results reveal that when the fluid drag force is less than the liquid bridge force between particles, liquid distribute all over the bed. Bubble size increases as the increase of inter-particle force, then decreases owing to the increase of particle weight with increasing liquid flow rate. When the fluid drag force is greater than the liquid bridge force, liquid mainly distribute in the upper part of the bed. And it is difficult for the wet particles to form agglomerates. Bubble size decreases with increasing liquid flow rate due to the increasing of minimum fluidization velocity. Besides, the acoustic emission (AE) measurements illustrate that the liquid adhesion and evaporation on particles could enhance the particles motion intensity. Consequently, the bubble and particle behaviors change due to the variation in fluidized gas velocity and liquid flow rate should be seriously considered when attempting to successfully design and operate the side wall liquid spray gas solid fluidized bed.  相似文献   

5.
《Advanced Powder Technology》2020,31(8):3540-3550
Fundamental research on the flow and mixing of non-spherical particles is critical for industrial production and design. In this paper, the Discrete Element Method (DEM) is used to study the flow and mixing of granular materials in the horizontal rotating drum, and the periodic boundary condition is employed to eliminate end wall effect. Super-quadric elements are adopted to describe spherical and non-spherical particles. The influences of rotating speed, blockiness, and aspect ratio on the mixing rate are investigated by the Lacey mixing index. The results show that the rotating speed has a primary effect on the mixing rate, whereas the effect of the particle shape on the mixing rate is a secondary factor for non-spherical granular systems. Moreover, the mixing rate of spherical and non-spherical particle systems is significantly different. The mixing rate of spheres is the lowest, and the cubes have a higher mixing rate than the cylinders. As the blockiness decreases or aspect ratio deviates from 1.0, the mixing rate decreases. Ordered face-to-face contacts and dense packing structures result in a higher mixing rate. The analysis of kinetic energy shows that particle shape affects the transfer efficiency of external energy to the granular systems. The translational kinetic energy of non-spherical particles is higher than that of spherical particles, and their rotational kinetic energy is lower than that of spheres. Meanwhile, the blockiness enhances the transfer efficiency of external energy to the non-spherical systems; in contrast, the aspect ratio reduces the energy conversion efficiency.  相似文献   

6.
The flow characteristics in a novel cylindrical spouted bed with spherical longitudinal vortex generators is numerically investigated by two-fluid model (TFM) with kinetic theory for granular flow, the longitudinal vortex technology is adopted in the spouted bed so as to strengthen the particles radial mixing between spout and annulus zones, the row number effect (1–3 rows) of longitudinal vortex generators (LVGs) on gas–solid flow behavior in three dimensional spouted beds was numerically simulated. The CFD results show that, longitudinal vortices can effectively increase particle volume fraction near annulus zone in the spouted bed, the maximum increase of particle volume fraction near annulus region is 183%, and the pressure drop in spouted beds increases with increasing of LVGs’ row number. There exists an optimal row number (equal 2) of LVGs, at witch the radial velocity of particle phase reaches maximum in the limited spouted bed space, the value of turbulent kinetic energy of gas phase in spouted bed can be significantly promoted by longitudinal vortex, espeically in the spout zone and near the annulus region. Also, the enhancement effect of multi-row LVGs on turbulent kinetic energy of gas phase decreases when the cross section height of spouted beds increases.  相似文献   

7.
A soft-sphere discrete particle model based on re-arrangement of the gas phase governing equations has been developed to investigate the formation of a single bubble due to a central jet pulse in two-dimensional coarse-particle fluidized beds. A comprehensive study is made on the influence of bed width, particle properties and jet velocity on the bubble characteristics. The bubble grows heterogeneously when its diameter reaches one third of the bed width and elongates rapidly when its transverse size exceeds about one half of the bed width. At a given superficial velocity, a bed with a larger width leads to a decrease of gas leakage of the bubble. The influence of particle density and particle size on the bubble characteristics can be considered as the effect of the minimum fluidization velocity, which is consistent with the results obtained by two-fluid model in literature. In the presence of wall restrictions, bubble grows into an egg shape rather than an elliptical shape at detachment time when the superficial velocity is higher than the minimum fluidization velocity. Besides, a thin layer in dilute regime is observed near the top of the bed at a larger jet velocity. A bed of finer particles tends to form this layer more easily.  相似文献   

8.
Formation of particle clusters in liquid–solid circulating fluidized beds significantly affects macroscopic hydrodynamic behavior of the system. A multi scale interfacial drag coefficient (MSD) is proposed to determine effects of particle clusters on the mesoscale structure, by taking momentum and energy balance of dense phase, dilute phase and interphase into account. Based on the transportation and suspension energy-minimization method, the multi scale interfacial drag coefficient model used in this work is combined with the Euler–Euler two fluid model to simulate the heterogeneous behaviors of liquid–solid circulating fluidized bed. It was found that the reduction in drag coefficient is at least an important factor for the simulation of clusters formation, and the core-annulus flow is observed in the riser. The liquid–solid flow regime was significantly affected by the down-flow of particles in the form of clusters near the walls of the riser. The calculated concentration of particles inside the riser compared reasonably well with the available experimental data obtained by Razzak et al.  相似文献   

9.
Wet granular materials exhibit unique physical and mechanical properties, especially in relation to wave propagation, which is quite different from dry granular materials. In this paper, by introducing the capillary bridge force into the discrete element method, the stress wave in mono-sized bead string with various water content has been studied. First the vibration of two particles with liquid bridge has been analyzed. The presence of the liquid bridge force causes the kinetic response of the particles to exhibit completely different properties than that of the dry particles. The equilibrium position is affected by both the physical properties of the particles and the liquid bridge properties. Then the wave propagation behaviors in a mono-sized bead string have been analyzed. According to whether the liquid bridge volume has an effect on granular motion, the whole process can be divided into two stages. Stage I, particles are physically contacted with each other directly. The influence of liquid bridge force is independent of the bridge volume. Stage II, particles start to oscillate back and forth at their equilibrium positions, the influence of the liquid bridge force becomes related to the bridge volume. The kinetic energy dissipation first decreases and then increases. A U-shaped trend appears throughout the dissipation process. In our work, the mechanical properties of wet granular materials are studied from two levels: particle vibration and wave propagation, which will provide theoretical guidance for the application of granular materials in aqueous environment.  相似文献   

10.
Industrial bubbling fluidized beds are used to fluidize particles. When particles are fluidized, electrostatic effects will cause the particles to form obvious agglomerates, thus reducing fluidization performance. For better fluidization performance, internal component immersed tubes are usually placed in fluidized bed to limit the bubble size and reduce particle agglomerates. Meanwhile, pulsed gas flow can increase particle disturbance, which is also an effective method to reduce particle agglomerates. In this paper, the CFD-DEM model under electrostatic effects is constructed to research the bubbling and flow characteristics in fluidized beds. Firstly, particle mixing qualities with and without the immersed tube are compared. Then, the effects of different superficial gas velocities are investigated with an immersed tube. Finally, different frequencies are applied to study the energy loss and flow characteristics around the immersed tube. The results show that the addition of the immersed tube can reduce bubble size to facilitate particle mixing. Due to the obstruction of the immersed tube, the bubbles are generated near the wall. As the superficial gas velocity increases, the larger bubbles are generated. Moreover, the electrostatic force applied to the particles varies periodically with the frequency of incoming pulsed gas flow, with fluctuations maximal at 2.5 Hz.  相似文献   

11.
The aim of this work was to investigate effect of electrostatic charge of particles on the fluidization hydrodynamics. Behavior of bubbles in beds of polyethylene particles was studied through analysis of pressure fluctuations in the frequency domain. Fluidized beds of uncharged, pre-charged and bed-charged particles were used in the experiments. Results revealed that in the bed of pre-charged particles, compared to uncharged experiments, particle-particle repulsive force increases the bed voidage and reduces equilibrium bubble size while the transition velocity to turbulent fluidization is decreased. In the case of bed-charged particles, at low gas velocities bubble fraction is greater compare to the other cases due to faster bubble coalescence in the presence of particle-wall attractive electrostatic force. Electrostatic charge of bulk increases by increasing the gas velocity. At high gas velocities, the repulsion force between highly charged particles overcomes the particle-wall effect on bubble formation and reduces the bubble size to less than in uncharged experiments. Accumulation of particles near the wall in the bed od bed-charged particles affects the hydrodynamics in two ways: first it accelerates bubble growth via bubble coalescence at low gas velocities, second it limits the bubble growth and reduces the transition velocity to turbulent regime to a value less than for pre-charged particles.  相似文献   

12.
Gas-solid granular flows with non-spherical particles occur in many engineering applications such as fluidized beds. Such flows are usually contained by solid walls and always some particles move close to a wall. The proximity of a wall considerably affects the flow fields and changes the hydrodynamic forces and torque acting on particles moving near the wall. In this paper, we numerically investigate the drag, lift and torque acting on a non-spherical particle in the vicinity of a planar wall by means of lattice Boltzmann simulations. To gain an exhaustive understanding of the complex hydrodynamics and study the influence of various geometrical and flow parameters, a single 2D elliptical particle is selected as our case study. In the simulations, the effect of particle Reynolds number, distance to the wall, orientation angle and aspect ratio on drag, lift and torque is studied. Our study shows that the presence of a wall causes significant changes in hydrodynamic forces, with increasing or decreasing drag and lift forces, depending on the distance from the wall. Even the direction of lift and torque may change, depending on both the distance from the wall and particle orientation angle. Also, an ellipse with higher AR experiences larger hydrodynamic forces and torque whatever the gap size and orientation angle.  相似文献   

13.
Spout-fluid beds are used for a variety of processes involving particulate solids. They are employed where the particle agglomeration, dead zones, and sticking of particles to the vessel are the common problems in conventional spouted beds. Applications involved are granulation, coating, drying, combustion, and gasification. In this study, experimental studies have been carried out in a cylindrical Perspex column (0.094 m internal diameter and 1.217 m height) using glass beads and air. The effects of initial bed loading, spout velocity, and background (fluidization) velocity on pressure drop and gas holdup have been investigated. It is found that the minimum spout-fluidizing velocity increases with increase in initial bed loading. The pressure drop and gas holdup increase with increasing bed loading. In spout-fluid bed condition, at a constant spout velocity, as the background gas velocity increases, the gas holdup increases, and it is found to be high for smaller bed loading and is low for larger bed loading at higher velocities. The fountain height increases as spouting velocity increases and it decreases with initial bed loading. The total velocity required to fluidize the particles in spout fluidization is lower in comparison to spouted beds and fluidized beds.  相似文献   

14.
《Advanced Powder Technology》2019,30(11):2541-2547
Rodlike particles have been usually found in industrial applications, such as the straw and needle catalyst in energy and chemical engineering. Compared to spherical particles, rodlike particles exhibit different behaviour in the packing structure due to their rotational movement. In this work, we have experimentally explored the packing structure and its friction factor for fluid flow. The porosity of packing structure generated by two packing methods is measured for four kinds of rodlike particles. The experimental results show that the porosity of bed of rodlike particles in the poured packing is not a monotonic function of the aspect ratio of particles. This is due to the competition between the “self-fitting” effect and excluded effect. The porosity of bed of rodlike particles is more sensitive to the packing method than that of spherical particles. To describe the pressure drop of fluid flow through the packing structure, the Ergun equation is further modified by introducing the modified Reynolds number and Galileo number. By combing the experimental data for packed bed generated by the fluidised packing method, and other experimental work in current literature, a new empirical equation is proposed to predict the friction factor of the packing structure of rodlike particles, in which the effects of the particle orientation and particle shape are both considered by the equivalent sphericity. These experimental results would be of interest from applied standpoints as well as revealing fundamental effects of the aspect ratio of rodlike particles on the packing structure.  相似文献   

15.
In solid mixing the raw materials typically differ at least in one material property, such as particle size, solid density and wetting properties, which in turn influence particle mobility. For example, smaller particles can percolate through the voids of larger ones under the influence of strain and gravity. This may produce fine particle accumulation at the bottom of the mixing vessel which results in undesired, inhomogeneous final products. When wet particles with different wetting properties need to be mixed, heteroagglomeration may occur as another segregation mechanism. We present a new capillary bridge force model to study segregation in moist cohesive mixing processes using DEM. New analytical equations of best fit are derived by solving the Young–Laplace equation and performing a regression analysis, in order to investigate discontinuous mixing processes of dry and moist materials with different particle sizes and different contact angles. Compared to a dry mixing process, mixing efficiency is improved by the addition of a small amount of liquid. While percolating segregation is reduced, heteroagglomerates occur in the wet mixing process.  相似文献   

16.
A hopper has very wide and vital applications in handing the granular materials in daily life and industrial production, and the full understanding of the granular flow inside a hopper is of great importance to control and optimize the discharge process. By employing experimental and numerical methods, the influence of particle packed pattern on the transient granular flow is investigated in terms of the particle-scale kinetics and structure. For the mono-sized particles packed pattern, despite the similar particle-scale structure, smaller particles achieve greater kinetic energy conversion efficiency, which helps shorten the discharge time. For the binary-sized particles uniform mixing pattern, the interaction between particles increases the individual kinetic energy and transient average coordination number (CN) of large particles, while decreases that of small ones. Then the in-between kinetic energy and the disperse structure are reached. For the layer by layer mixing pattern, the strong percolation effect caused by the upper small particles hinders the increase of the individual kinetic energy at the beginning of the discharge process, and the transient average CN at the layer interface abruptly reaches 8. By contrast, when the small particles are placed at the bottom, more particles are active in the larger space, and subsequently, a looser structure is achieved in a shorter period.  相似文献   

17.
The minimum spouting velocity, Ums, defined for stable external spouting, is found also crucial to ensure good mixing when multi-component particles are involved in spouted beds. In this study, experiments were performed in a cylindrical-conical spouted bed to study the influences of diverse factors on the Ums of a binary system with the cylindrical particles and the spherical bed material. The results showed that the changes in Ums with the particle properties (particle shape, size, and density) and operating conditions were closely related to the blending ratio of the mixture. When the volume fraction of the non-spherical particles was relatively small (less than 40% to 50%), Ums mainly depended on the properties of the bed material. It was considered acceptable to estimate Ums by assuming that the system only consisted of the spherical bed material. Otherwise, the cylindrical particle shape has a significant influence on the flow dynamics and Ums. For such spouting systems, an equivalent diameter of the bed material was proposed to reflect the shape effects of non-spherical particles, whereby Ums would be independent of the blending ratio. Consequently, a novel empirical correlation is proposed to quantitatively predict the Ums of binary mixtures.  相似文献   

18.
《Advanced Powder Technology》2021,32(10):3525-3539
The discrete element method (DEM) coupled with computational fluid dynamics (CFD) is a powerful tool for exploring the detailed behaviors of dense particle–fluid interaction problems such as fluidized beds. Coarse-graining models have been proposed to decrease the computational cost by increasing the model particle size. In this study, we examine the influence of the model particle size and the spatial resolution on the average size and number of bubbles in coarse-graining DEM-CFD calculations of bubbling fluidized beds. Calculation results indicate that the bubble size is scaled by the model particle size if parameters are following similarity laws defined in a particle scale, as well as the geometric similarity of the whole system is maintained. The usage of coarse spatial resolution increases the bubble size and decreases the number of bubbles. The countervailing influence of the model particle size and the spatial resolution in a practical coarse-graining scenario results in nearly the same bubble size.  相似文献   

19.
《Advanced Powder Technology》2019,30(11):2703-2711
This study explored the influence of wet and dry grinding conditions on breakage rate, shape factor and surface roughness of ground particles, induction time (the threshold for particle–bubble attachment to occur), and flotation recovery. The experimental results indicated that the dry grinding breakage rate was much higher than the wet grinding one. The first-order region was limited to a relatively short grinding time, where it was considered that little or no secondary breakage occurred. With the increasing time, the dry grinding breakage rate increased, while it decreased for wet grinding (solid concentration of 70 vol.%). The differences in shape factor and surface roughness of the wet- and dry-ground samples were attributed to different breakage mechanisms and grinding energy amounts generated by those two types of procedures. The wet-ground particles were characterized by more irregular shape factors and smoother surfaces, and thus presented shorter induction times and higher floatation recoveries compared to the dry-ground ones.  相似文献   

20.
空调器室内机多数采用翅片管换热器,会因制冷运行过程中表面析湿而粘附灰尘,导致空气流动阻力增大。本文选用空调器中常用的平直翅片、波纹翅片和开窗翅片作为测试样件,翅片间距范围为1.5~2.2 mm,研究了翅片管换热器在析湿工况下的积灰特性及积灰对空气侧压降的影响。结果表明:翅片表面的析湿量决定积灰程度,析湿液滴分布越密集、液桥数量越多,翅片迎风面的堵塞程度越严重且空气侧压降越大。在相同析湿工况下,具有复杂结构的开窗翅片和小翅片间距更容易积灰并增大空气侧压降,因此降低翅片结构复杂程度并适当增大翅片间距有利于空调器的防尘。在积灰过程中,随着换热器表面粉尘沉积量增加,空气侧压降先增大后保持稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号