首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
全氟羧酸自组装分子润滑膜的纳米摩擦学性能的研究   总被引:1,自引:0,他引:1  
莫宇飞  白明武 《润滑与密封》2007,32(11):18-20,23
采用气相沉积的方法在铝表面制备了不同碳链长度的全氟羧酸自组装膜。考察了全氟羧酸自组装膜的接触角、膜厚、粘着和微摩擦等表面性质。对相对湿度和温度等环境因素对全氟羧酸自组装膜的纳米摩擦学性能的影响进行了研究。探讨了在环境因素影响下的减摩抗粘着机制。结果表明:自组装膜具有显著的抗粘着效果;随着相对湿度的增加,针尖与样品的粘着力增加,随着温度的增加,针尖与样品粘着力降低,并趋于稳定值;全氟羧酸自组装单层膜能显著降低表面的摩擦力,起到良好的减摩效果,且随烷基链越长,减摩效果越好。  相似文献   

2.
《Wear》2007,262(1-2):130-137
Friction characteristics of self-assembled monolayers (SAMs) coated on Si-wafer (1 0 0) by chemical vapor deposition technique were studied experimentally at nano and micro-scales. Four self-assembled monolayers, such as dimethyldichlorosilane (DMDC), diphenyldichlorosilane (DPDC), perfluorooctyltrichlorosilane (PFOTS) and perfluorodecanoicacid (PFDA) coated on Si-wafer (1 0 0) were used as test materials. Nano-scale friction was measured using atomic force microscopy (AFM) in the range of 0–40 nN normal loads, in LFM (lateral force microscopy) mode, using a contact mode type Si3N4 tip. Results showed that the friction of SAMs at this scale was influenced by their physical/chemical properties, while that of Si-wafer by its inherent adhesion. Further, micro-scale friction tests were also performed with a ball-on-flat type micro-tribotester under reciprocating motion. Friction was measured in the range of 1500–4800 μN applied normal loads using glass balls of varying radii, viz., 0.25, 0.5 and 1 mm. It was observed that the performance of SAMs was more superior to Si-wafer even at micro-scale, except for PFDA. Evidences obtained using scanning electron microscope showed that Si-wafer and PFDA exhibited wear at this scale. Wear in the case of Si-wafer was due to solid–solid adhesion and that in the case of PFDA due to the influence of humidity (moisture). The micro-scale friction in both these materials was severely influenced by their wear.  相似文献   

3.
用于MEMS中的硅基材料微观摩擦磨损性能研究   总被引:1,自引:0,他引:1  
李志 《机械工程师》2005,(11):75-77
利用原子力显微镜考察了Si(100)表面的粘附、摩擦磨损性能,试验考虑了外界湿度、循环扫描次数等因素的影响,并初步提出了解决方案.结果表明:在AFM摩擦试验中,压电陶瓷的滞后效应和非线性效应的影响比较显著;随着外界湿度的增加,湿度对Si(100)表面粘附力和摩擦系数有较大的影响;此外,外加载荷和扫描循环次数直接决定Si(100)表面的耐磨性能.  相似文献   

4.
Kim  H.I.  Koini  T.  Lee  T.R.  Perry  S.S. 《Tribology Letters》1998,4(2):137-140
The frictional properties of self-assembled monolayers (SAMs)formed from four different species (n-octyltrichlorosilane,1H,1H,2H,2H-perfluorooctyltrichlorosilane, tridecanethiol, and 13,13,13-trifluorotridecanethiol) were measured on the molecular scale using atomic force microscopy (AFM). On this scale, monolayers containing partially fluorinated alkyl chains exhibited higher frictional properties than monolayers containing analogous fully hydrogenated alkyl chains. Systematic comparison of the frictional properties of these SAMs provided insight into the molecular contributions to the frictional response. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
The friction behaviour of Si-wafer, diamond-like carbon (DLC) and two self-assembled monolayers (SAMs) namely dimethyldichlorosilane (DMDC) and diphenyl-dichlorosilane (DPDC) coated on Si-wafer was studied under loading conditions in milli-newton (mN) range. Experiments were performed using a ball-on-flat type reciprocating micro-tribo tester. Glass balls with various radii 0.25 mm, 0.5 mm and 1 mm were used. The applied normal load was in the range of 1.5 mN to 4.8 mN. Results showed that the friction increased with the applied normal load in the case of all the test materials. It was also observed that friction was affected by the ball size. Friction increased with the increase in the ball size in the case of Si-wafer. The SAMs also showed a similar trend, but had lower values of friction than those of Si-wafer. Interestingly, for DLC it was observed that friction decreased with the increase in the ball size. This distinct difference in the behavior of friction in DLC was attributed to the difference in the operating mechanism. It was observed that Si-wafer and DLC exhibited wear, whereas wear was absent in the SAMs. Observations showed that solid-solid adhesion was dominant in Si-wafer, while plowing in DLC. The wear in these two materials significantly influenced their friction. In the case of SAMs their friction behaviour was largely influenced by the nature of their molecular chains.  相似文献   

6.
Liu H  Bhushan B 《Ultramicroscopy》2003,97(1-4):321-340
Molecularly thick perfluoropolyether (PFPE) films are considered to be good protective films for micro/nanoelectromechanical systems (MEMS/NEMS) to reduce stiction, friction, and improve their durability. Understanding the nanotribological performance and mechanisms of these films are quite important for efficient lubrication for MEMS/NEMS devices. These devices are used in various operating environments and their effect on friction, adhesion and durability needs to be clarified. For this purpose, mobile and chemically bonded PFPE films were deposited by dip coating technique. The friction and adhesion properties of these films were characterized by atomic force microscopy (AFM). The effect of rest time, velocity, relative humidity, and temperature on nanotribological properties of these films was studied. Durability of these films was also measured by repeated cycling tests. The adhesion, friction mechanisms of PFPE at molecular scale, and the mechanisms of the effect of operating environment and durability are subject of this paper. This study found that adsorption of water, formation of meniscus and its change during sliding, viscosity, and surface chemistry properties play a big role on the friction, adhesion, and durability of the lubricant films.  相似文献   

7.
Liu H  Bhushan B 《Ultramicroscopy》2004,100(3-4):391-412
Texas Instruments’ digital micromirror device (DMD) comprises an array of fast digital micromirrors, monolithically integrated onto and controlled by an underlying silicon memory chip. The DMD is one of the few success stories in the emerging field of MEMS. In this study, an atomic force microscope (AFM) has been used to characterize the nanotribological properties of the elements of the DMD. An AFM methodology was developed to identify and remove micromirrors of interest. The surface roughness, adhesion, friction, and stiffness properties of the DMD elements were studied. The influence of relative humidity and temperature on the behavior of the DMD element surfaces was also investigated. Potential mechanisms for wear and stiction are discussed in light of the findings.  相似文献   

8.
Prototype cantilevers are presented that enable quantitative surface force measurements using contact-mode atomic force microscopy (AFM). The "hammerhead" cantilevers facilitate precise optical lever system calibrations for cantilever flexure and torsion, enabling quantifiable adhesion measurements and friction measurements by lateral force microscopy (LFM). Critically, a single hammerhead cantilever of known flexural stiffness and probe length dimension can be used to perform both a system calibration as well as surface force measurements in situ, which greatly increases force measurement precision and accuracy. During LFM calibration mode, a hammerhead cantilever allows an optical lever "torque sensitivity" to be generated for the quantification of LFM friction forces. Precise calibrations were performed on two different AFM instruments, in which torque sensitivity values were specified with sub-percent relative uncertainty. To examine the potential for accurate lateral force measurements using the prototype cantilevers, finite element analysis predicted measurement errors of a few percent or less, which could be reduced via refinement of calibration methodology or cantilever design. The cantilevers are compatible with commercial AFM instrumentation and can be used for other AFM techniques such as contact imaging and dynamic mode measurements.  相似文献   

9.
Xu C  Jones RL  Batteas JD 《Scanning》2008,30(2):106-117
Octadecyltriethoxysilane (OTE) self- assembled monolayers (SAMs) and their effects on friction and adhesion have been investigated on various combinations of functionalized and unfunctionalized silicon oxide surfaces including the oxidized surface of crystalline Si(100), silica nanoparticle films, and oxidized Si atomic force microscopy (AFM) tips. Force-distance spectroscopy was utilized to probe and compare the properties of the OTE SAMs on silica asperities with nanoscale curvature against these same monolayers on surfaces with sub-1 nm roughness (flat surfaces). It was found that adhesion between SAMs and silicon oxide surfaces can vary significantly when assembly takes place on surfaces with nanoscopic curvature as compared to flat surfaces. Observations indicate that the SAM structure present during force measurements is dynamic in nature, which yields different adhesion values when measured with variations of both tip-sample contact time and tip-approach/retract rates. These results point the need in reporting a number of measurement parameters when probing adhesion by SAM functionalized tips.  相似文献   

10.
C60自组装单分子膜的制备及其磨擦特性   总被引:3,自引:2,他引:3  
利用胺基与C60分子的加成反应,在3-胺基丙基-三乙氧基硅烷(APS)的自组装单分子膜(SAMs)表面上成功的制备了与基底化学键结合的C60-SAMs.其表面水接触角约为76°,膜厚约为1.15 nm,AFM形貌像显示其表面光滑、均匀,基本不含缺陷.摩擦学结果表明,APS自组装单分子膜由于其分子链短,膜的有序性差,表面颗粒聚集物及"针孔"等缺陷多,而不具有润滑作用.当在其上形成C60单分子层膜后,表现出优异的摩擦学性能,摩擦系数约为0.09~0.13,在给定实验条件下抗磨损寿命大于10 000次,有望作为微型机械的边界润滑材料使用.  相似文献   

11.
Ionic liquids (ILs) are considered as a new kind of lubricant for micro/nanoelectromechanical system (M/NEMS) due to their excellent thermal and electrical conductivity. However, so far, only few reports have investigated the tribological behavior of molecular thin films of various ILs. Evaluating the nanoscale tribological performance of ILs when applied as a few nanometers-thick film on a substrate is a critical step for their application in MEMS/NEMS devices. To this end, four kinds of ionic liquid carrying methyl, hydroxyl, nitrile, and carboxyl group were synthesized and these molecular thin films were prepared on single crystal silicon wafer by dip-coating method. Film thickness was determined by ellipsometric method. The chemical composition and morphology were characterized by the means of multi-technique X-ray photoelectron spectrometric analysis, and atomic force microscopic (AFM) analysis, respectively. The nano- and microtribological properties of the ionic liquid films were investigated. The morphologies of wear tracks of IL films were examined using a 3D non-contact interferometric microscope. The influence of temperature on friction and adhesion behavior at nanoscale, and the effect of sliding frequency and load on friction coefficient, load bearing capacity, and anti-wear durability at microscale were studied. Corresponding tribological mechanisms of IL films were investigated by AFM and ball-on-plane microtribotester. Friction reduction, adhesion resistance, and durability of IL films were dependent on their cation chemical structures, wettability, and ambient environment.  相似文献   

12.
Haochih Liu B  Chen CH 《Ultramicroscopy》2011,111(8):1124-1130
The in-use wear of atomic force microscopy (AFM) probe tips is crucial for the reliability of AFM measurements. Increase of tip size for several nanometers is difficult to monitor but it can already taint subsequent AFM data. We have developed a method to study the shape evolution of AFM probe tips in nanometer scale. This approach provides direct comparison of probe shape profiles, and thus can help in evaluation of the level of tip damage and quality of acquired AFM data. Consequently, the shape degradation of probes modified by hydrophobic alkylsilane self-assembled monolayers (SAMs) was studied. The tip wear length and wear volume were adopted to quantitatively verify the effectiveness of hydrophobic coatings. When compared with their silicon counterparts, probes modified by SAM materials exhibit superior wear-resistant behavior in tapping mode scans.  相似文献   

13.
In the present work, several molecular dynamics simulations have been performed to clarify dynamically the contact mechanism between the specimen surface and probe tip in surface observations by an atomic force microscope (SFM) or friction force microscope (FFM). In the simulation, a three‐dimensional model is proposed where the specimen and the probe are assumed to consist of monocrystalline copper and rigid diamond or a carbon atom, respectively. The effect of the cantilever stiffness of the AFM/FFM is also taken into consideration. The surface observation process is simulated on a well‐defined Cu{100} surface. From the simulation results it has been verified that the surface images and the two‐dimensional atomic‐scale stick‐slip phenomenon, just as is the case for real AFM/FFM surface observations, can be detected from the spring force acting on the cantilever. From the evaluation of the behaviour of specimen surface atoms, the importance of the specimen stiffness in deciding the cantilever properties can also be understood. The influence of the probe tip shape on the force images is also evaluated. From the results it can be verified that the behaviour of the specimen surface atoms as well as the solid surface images in AFM/FFM surface observations can be understood using the molecular dynamics simulation of the model presented.  相似文献   

14.
Self-assembled monolayer (SAM) films have been formed on oxidized copper (Cu) substrates by reaction with 1H,1H,2H,2H-perfluorodecylphosphonic acid (PFDP), octadecylphosphonic acid (ODP), decylphosphonic acid (DP), and octylphosphonic acid (OP) and then investigated by X-ray photoelectron spectroscopy (XPS), contact angle measurement (CAM), and atomic force microscopy (AFM). The presence of alkyl phosphonate molecules, PFDP, ODP, DP, and OP, on Cu were confirmed by CAM and XPS analysis. No alkyl phosphonate molecules were seen by XPS on unmodified Cu as a control. The PFDP/Cu and ODP/Cu SAMs were found to be very hydrophobic having water sessile drop static contact angles of more than 140°, while DP/Cu and OP/Cu have contact angles of 119° and 76°, respectively. PFDP/Cu, ODP/Cu, DP/Cu, and OP/Cu SAMs were studied by friction force microscopy, a derivative of AFM, to better understand their micro/nanotribological properties. PFDP/Cu, ODP/Cu, and DP/Cu had comparable adhesive force, which is much lower than that for unmodified Cu. ODP/Cu had the lowest friction coefficient followed by PFDP/Cu, DP/Cu, and OP/Cu while unmodified Cu had the highest. XPS data gives some indication that a bidentate bond forms between the alkyl phosphonate molecules and the oxidized Cu surface. Hydrophobic phosphonate SAMs could be useful as corrosion inhibitors in micro/nanoelectronic devices and/or as promoters for anti-wetting, low adhesion surfaces.  相似文献   

15.
《Wear》2006,260(7-8):745-750
Rare-earth (RE) (lanthanum-based) thin films were prepared on hydroxylated glass substrates by a self-assembling process from specially formulated solution. Atomic force microscope (AFM) and X-ray photoelectron spectrometry (XPS) and scanning electron microscope (SEM) are used to characterize the thin films. The tribological properties of the as-prepared thin films sliding against a steel ball were evaluated on a friction and wear tester. The tribological experiment shows that the friction coefficient of glass substrate reduced from 0.85 to 0.13 after the formation of RE self-assembled film (SAM) on its surface. And the RE self-assembled film has longer wear life (2880 sliding pass). It is demonstrated that RE self-assembled film exhibited good wear resistant property. The superior friction reduction and wear life of RE films are attributed to good adhesion of the film to the substrate and special characteristic of the RE elements.  相似文献   

16.
Using friction force microscopy (FFM) under controlled environments, we have systematically investigated the humidity effect on the frictional properties of two important classes of self-assembled monolayers (SAMs), i.e., N-octadecyltrimethoxysilane (OTE, CH3(CH2)17Si(OCH3)3) on SiO2(OTE/SiO2), and N-alkanethiols on Au(111), together with their respective substrates. Experimental results show that both OTE and alkylthiol SAMs can decrease the friction force between a Si3N4 atomic force microscope (AFM) tip and substrates. The nearly humidity-independent friction of the two kinds of SAMs indicates that these SAMs are ideal lubricants in applications of micro-electro-mechanical systems (MEMS) under different environments. The humidity dependence—as the humidity increases, the friction first increases and then decreases—of the two substrates, SiO2 and Au(111), can be explained by the adsorption of water. The decrease in the friction at high humidity is attributed to the low viscosity in the multilayers of water, while the increase in the friction at low humidity can be explained by the high viscosity between the water monolayer and the surfaces (AFM tip and sample), possibly due to the confinement effects. The effect of modification of the AFM tip with alkanethiol molecules on the humidity dependence of Au(111) friction has also been investigated.  相似文献   

17.
Kim  Hyun. I.  Boiadjiev  V.  Houston  J.E.  Zhu  X.-Y.  Kiely  J.D. 《Tribology Letters》2001,10(1-2):97-101
Using interfacial force microscopy (IFM), the tribological properties of self-assembled monolayers (SAM) on Si surfaces produced by a new chemical strategy are investigated and compared to those of “classical” SAM systems, which include alkanethiols on Au and alkylsilanes on SiOx. The new SAM films are prepared by depositing n-alkyl chains with OH-terminations onto Cl-terminated Si substrates. The chemical nature of the actual lubricating molecules, n-dodecyl, is kept constant in all three thin film systems for direct comparison and similarities and differences in tribological properties are observed. The adhesion strength is virtually identical for all three systems; however, frictional properties differ due to differences in film packing. Differences in the chemical bonds that attach the lubricant molecules to the substrate are also discussed as they influence variations in film wear and durability. It is demonstrated that the new SAM films are capable of controlling the friction and adhesion of Si surfaces equally well as the classical SAMs and are potentially more reproducible and more durable.  相似文献   

18.
Gracias  D.H.  Zhang  D.  Shen  Y.R.  Somorjai  G.A. 《Tribology Letters》1998,4(3-4):231-235
Surface-specific IR+visible sum frequency generation (SFG) spectroscopy was used to obtain chemical composition of two polymer surfaces. The SFG surface vibrational spectrum of pure low density polyethylene and that of a commercial sample of the same kind of polymer, which contains additives, are markedly different. This correlates well with the very different surface mechanical properties, i.e., stiffness (indicative of the elastic modulus) and friction, which were measured by atomic force microscopy (AFM) on the same polymer surfaces. The surface of CLDPE is dominated by methoxy (−OCH3) contained additives, segregated from the bulk, which explains a lower stiffness, adhesion and friction of the surface, as measured by AFM. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Salmeron  Miquel 《Tribology Letters》2001,10(1-2):69-79
The structural, mechanical (friction) and spectroscopic properties of model lubricant films made of self-assembled and Langmuir–Blodgett monolayers on quartz, mica and gold have been investigated with atomic force microscopy, the surface forces apparatus and sum-frequency generation. In these films, the molecules tend to form densely packed structures, with the alkane chains mostly vertical and parallel to each other. The SFG results suggest that under moderate pressures of a few tens of MPa, the methyl end group of the alkane chains is rotated to accommodate a terminal gauche distortion. The molecule, however, retains its upright close-packed structure with a lattice periodicity when ordered, which can be resolved by AFM. At pressures above 0.1 GPa, changes in the form of collective molecular tilts take place that lower the height of the monolayer. Only certain angles of tilt are allowed that are explained by the interlocking of methylene units in neighboring chains. The discrete angular tilts are accompanied by increases in friction. A model based on the van der Waals attractive energy between chains is used to explain the stability of the films and to estimate the cohesive energy changes during tilt and, from that, the increases in friction force.  相似文献   

20.
A comparative study of the microtribological properties of native oxide on Si (100), Si (100) coated with octadecyltrichlorosilane (OTS) and perfluorode‐cyltrichlorosilane (FDTS) self‐assembling monolayers (SAMs) is presented. The frictional properties between these samples and a bare silicon sphere were examined using a microtribometer. Microfriction was investigated as a function of the normal load and relative humidity. Also, the microfriction of OTS‐ and FDTS‐coated surfaces was studied as a function of sliding time and normal load to examine the lifetime of these monolayers. Confirming the results of earlier studies, in the microtribological regime OTS and FDTS significantly reduce the friction force in comparison to the bare, native oxide covered (hydrophilic) silicon surface. The friction vs. normal load curve of oxide‐covered surfaces as well as the SAMs can be described by contact mechanics. Lifetime measurements of the SAMs, examined as a function of the normal load and relative humidity, indicate that the OTS monolayers wear quickly in both dry and moist environments, while the lifetime of FDTS monolayers appears to increase in moist environments. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号