首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
To examine whether transfer of gamma globin genes into mouse erythroleukemia cells can be used for the analysis of regulatory elements of gamma globin gene promoter, Agamma gene constructs carrying promoter truncations that have been previously analyzed in transgenic mice were used for production of stably transfected mouse erythroleukemia (MEL) cell clones and pools. We found that constructs, which contain a microlocus control region (microLCR) that efficiently protects globin gene expression from the effects of the position of integration in transgenic mice, display position-dependent globin gene expression in MEL cell clones. Agamma globin gene expression among MEL cell clones carrying the muLCR(-201)Agamma and muLCR(-382)Agamma gene constructs ranged 15.5-fold and 17.6-fold, respectively, and there was no correlation between the Agamma mRNA levels and the copies of the transgene (r = .28, P = .18). There was significant variation in per copy Agamma globin gene expression among MEL cell pools composed of 10 clones, but not among pools composed of 50 clones, indicating that position effects are averaged in pools composed by large numbers of clones. The overall pattern of Agamma globin gene expression in MEL cell pools resembled that observed in transgenic mice indicating that MEL cell transfections can be used in the study of cis elements controlling gamma globin gene expression. MEL cell transfections, however, are not appropriate for investigation of cis elements, which either sensitize or protect the globin transgenes from position effects.  相似文献   

13.
14.
15.
16.
17.
Recent studies using interleukin (IL)-4-deficient animals have highlighted the existence of IL-4-independent immunoglobulin (Ig)E induction. We have established transgenic mice expressing IL-13 from a transgene comprising a genomic fragment containing the IL-13 gene and the human CD2 locus control region. The transgenes were expressed in lymphoid tissues and induced by T cell activators, suggesting regulation by elements of the IL-13 promoter. IL-13 transgenic lines expressed 10-100-fold higher levels of serum IgE than their littermate controls, but had normal levels of other serum Ig isotypes. Elevated IgE levels were also detected in sera from IL-4-deficient mice carrying IL-13 transgenes, indicating that IL-4 is not required for IL-13-induced IgE expression in the mouse. Expression of IL-13 also perturbed the development of thymocytes. Although thymocyte development was normal up to 4 wk of age, thymocyte number decreased dramatically thereafter, reaching 10% of normal by 10 wk, and despite normal size and appearance, histological examination demonstrated that transgenic thymi contained only small foci of thymocytes. The reduction in thymocyte number was due mainly to a depletion of CD4(+)CD8(+) thymocytes, and did not affect significantly the composition of peripheral T cell populations. These data indicate that expression of IL-13 transgenes in vivo can regulate IgE production in the mouse, and that IL-13 may also influence thymocyte development.  相似文献   

18.
The equine glycoprotein hormone alpha-subunit gene is expressed in both pituitary and placenta, unlike that of all other nonprimate mammals studied, in which expression is limited to pituitary. Previous studies of the 5'-flanking region of the equine alpha-subunit promoter have revealed unique characteristics as well as similarities with the human alpha-subunit promoter, which demonstrates a similar pattern of tissue-specific expression. We have cloned and sequenced the equine alpha-subunit gene and have used tissue culture systems and transgenic mice to characterize its expression. Unlike the human promoter, the cloned equine alpha-subunit promoter failed to direct trophoblast-specific expression in either tissue culture or transgenic mouse models, suggesting an entirely different mechanism for expression. In contrast, the equine alpha-subunit promoter was able to direct gonadotroph expression in both tissue culture and transgenic mouse models. In alphaT3-1 cells, 550 base pair (bp) was sufficient for expression. This expression involves promoter elements identified in other species as playing a role in gonadotroph expression, but mutation of these elements reveals differences in their relative contributions to promoter activity. In mice, 2800 bp of 5'-flanking sequence allowed specific expression in gonadotrophs but not in thyrotrophs or placenta. The pattern of estrogen regulation observed in transgenic mice matched neither the repression that has been observed with human and bovine alpha-subunit promoters in transgenic mice nor the stimulation in mRNA levels reported in mares, suggesting a unique mechanism that is not recapitulated in the transgenic model. Thus the equine alpha-subunit promoter uses a combination of conserved and unique features of gene regulation to direct its pattern of tissue-specific expression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号