首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Failure mode and effect analysis (FMEA) is an effective quality tool to eliminate the risks and enhance the stability and safety in the fields of manufacturing and service industry. Nevertheless, the conventional FMEA has been criticized for its drawbacks in the evaluation process of risk factors or the determination of risk priority number (RPN), which may lead to inaccurate evaluation results. Therefore, in this paper, we develop a novel FMEA method based on rough set and interval probability theories. The rough set theory is adopted to manipulate the subjectivity and uncertainty of experts' assessment and convert the evaluation values of risk factors into interval numbers. Meanwhile, the interval exponential RPN (ERPN) is used to replace the traditional RPN due to its superior properties, eg, solving the problems of duplicate numbers and discontinuity of RPN values. Furthermore, an interval probability comparison method is proposed to rank the risk priority of each failure mode for avoiding the information loss in the calculation process of RPN. Finally, a real case study is presented, and the comparison analysis among different FMEA methods is conducted to demonstrate the reliability and effectiveness of the proposed FMEA method.  相似文献   

2.
The purpose of this paper is to propose a modified version of Failure Mode and Effects Analysis (FMEA) to alleviate its drawbacks. FMEA is an important tool in risk evaluation and finding the priority of potential failure modes for corrective actions. In the proposed method, the Universal Generating Function (UGF) approach has been used to improve the assessment capability of the conventional Risk Priority Number (RPN) in ranking. The new method is named as URPN. It generates the most number of unique values in comparison with the previous methods and considers relative importance for the parameters while it is easy to compute. More unique numbers help to avoid from having the same priority level for different failure modes which represent various risk levels. A case study has been employed to demonstrate that the URPN not only can improve the shortcomings but also is able to provide accurate values for risk assessment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Failure mode and effect analysis (FMEA) is a powerful tool for defining, identifying, and eliminating potential failures from the system, design, process, or service before they reach the customer. Since its appearance, FMEA has been extensively used in a wide range of industries. However, the conventional risk priority number (RPN) method has been criticized for having a number of drawbacks. In addition, FMEA is a group decision behavior and generally performed by a cross‐functional team. Multiple experts tend to express their judgments on the failure modes by using multigranularity linguistic term sets, and there usually exists uncertain and incomplete assessment information. In this paper, we present a novel FMEA approach combining interval 2‐tuple linguistic variables with gray relational analysis to capture FMEA team members’ diversity opinions and improve the effectiveness of the traditional FMEA. An empirical example of a C‐arm X‐ray machine is given to illustrate the potential applications and benefits of the proposed approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Failure mode and effects analysis is a widely applied risk assessment method in various engineering and management domains. However, the identification of failure modes is difficult and uncountable. Therefore, a function–motion–action (FMA) decomposition method is developed to identify failure modes from the perspective of motion and extraordinarily suitable for mechatronic products. In the typical risk assessment, the ranking orders of failure modes are determined by risk priority number (RPN), which has been criticized for several drawbacks and improved by some alternative RPNs, but some drawbacks still exist, such as duplicate values, narrow admissible value range, and missing failure modes’ and risk factors’ weights. This study formulates several alternative weighted RPNs to overcome the above drawbacks, and the final ranking orders of failure modes are garnered through the integrated RPN (IRPN). First, failure modes are identified via the proposed FMA decomposition method and evaluated with crisp values, whose weights are aggregated from the basic failure modes’ weights. Second, the weights of the basic failure modes, risk factors and different RPN methods are derived from analytic hierarchy process. Third, the conditional weights of risk factors are determined by incorporating risk factors’ weights and failure modes’ conditional weights deduced from Shannon entropy. Next, several alternative weighted RPNs and IRPN are formulated to rank failure modes’ risk levels. Finally, an illustrative example about computer numerical control machine center is presented to demonstrate the application and effectiveness of the proposed method.  相似文献   

5.
Failure modes and effects analysis (FMEA) is a safety and reliability technique that is widely used to evaluate, design, and process a system against diverse possible ways through which the potential failure has a tendency to occur. In conventional FMEA, the risk evaluation is determined by risk priority number (RPN) obtained by multiplying of three risk factors—severity, occurrence, and detection. However, because of many shortages in conventional FMEA, the RPN scores have been widely criticized along issues bothering on ambiguity and vagueness, scoring, appraising, evaluating, and selecting corrective actions. In this paper, we propose a new integrated fuzzy smart FMEA framework where the combination of fuzzy set theory, analytical hierarchy process (AHP), and data envelopment analysis (DEA) is used, respectively, to handle uncertainty and to increase the reliability of the risk assessment. These are achieved by employing a heterogeneous group of experts and determining the efficiency of FMEA mode with adequate priority and corrective actions using RPN, time, and cost as indicators. A numerical example (aircraft landing system) is provided to exemplify the feasibility and effectiveness of the proposed model. The outputs of the proposed model compared with the conventional risk assessment technique results show its effectiveness, reliability, and propensity for real applications.  相似文献   

6.
朱玉杰  李谚 《工业工程》2016,19(3):122-129
针对失效模式与影响分析中的风险优先数(RPN)方法在质量改善项目排序问题上的局限性,提出一种新的排序方法。首先,借助模糊集理论和熵权法,确定决策指标的模糊指标值和主、客观权重;随后采用改进的理想解逼近法(TOPSIS)与秩和比法(RSR)获得优先级排序和分档;同时,提出并定义了相对应的关键术语:改善主题、难易程度、发生度和改善潜力,最后,结合企业实例验证了新排序方法的有效性和稳定性。  相似文献   

7.
Rotor blades are the major components of an aircraft turbine. Their reliability seriously affects the overall aircraft turbine security. Failure mode and effects analysis (FMEA), especially, the risk priority order of failure modes, is essential in the design process. The risk priority number (RPN) has been extensively used to determine the risk priority order of failure modes. When multiple experts give different risk evaluations to one failure mode, which may be imprecise and uncertain, the traditional RPN is not a sufficient tool for risk evaluation. In this paper, the modified Dempster–Shafer (D–S) is adopted to aggregate the different evaluation information by considering multiple experts’ evaluation opinions, failure modes and three risk factors respectively. A simplified discernment frame is proposed according to the practical application. Moreover, the mean value of the new RPN is used to determine the risk priority order of multiple failure modes. Finally, this method is used to deal with the risk priority evaluation of the failure modes of rotor blades of an aircraft turbine under multiple sources of different and uncertain evaluation information. The consequence of this method is rational and efficient.  相似文献   

8.
一种综合赋权的改进FMEA风险评估方法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对传统故障模式和影响分析(failure mode and effects analysis, FMEA)方法中的未考虑风险因子权重以及风险因子权重难确定这一问题,提出一种综合赋权的改进FMEA风险评估方法。该方法首先通过FMEA团队明确评估对象和FMEA范围,然后列出所有潜在故障模式,对故障模式进行打分,得到所有的专家打分评估表,再通过语言变量转化为直觉模糊数。由层次分析法确定主观权重,由数据本身确定客观权重,使用直觉模糊混合加权算子(intuitionistic fuzzy hybrid weighted, IFHW)算子集结评价信息,得到所有的故障模式的得分函数,最后基于风险最大化选取每个故障模式的最大分数,进行排名,得到最终的故障模式风险顺序。通过对静电纺丝设备进行FMEA分析,并与其他方法进行比较,验证了所提方法的可行性。  相似文献   

9.
Failure Mode and Effects Analysis (FMEA) is a technique used in the manufacturing industry to improve production quality and productivity. It is a method that evaluates possible failures in the system, design, process or service. It aims to continuously improve and decrease these kinds of failure modes. Adaptive Resonance Theory (ART) is one of the learning algorithms without consultants, which are developed for clustering problems in artificial neural networks. In the FMEA method, every failure mode in the system is analyzed according to severity, occurrence and detection. Then, risk priority number (RPN) is acquired by multiplication of these three factors and the necessary failures are improved with respect to the determined threshold value. In addition, there exist many shortcomings of the traditional FMEA method, which affect its efficiency and thus limit its realization. To respond to these difficulties, this study introduces the method named Fuzzy Adaptive Resonance Theory (Fuzzy ART), one of the ART networks, to evaluate RPN in FMEA. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
During the life cycle of technical systems, precise and detail failure risk analysis gives suitable input elements for taking appropriate actions, which allows reducing of unwanted uncertainty and occurrences. Traditional method for risk analysis, which is applied for many years, especially in analysis of functionality of technical systems, is Failure Mode and Effects Analysis (FMEA) method. However, in many cases, this method shows weaknesses related to the inconsistency, which is a result of insecure subjectivity during the determination of values for parameters that gives Risk Priority Number (RPN), as well as other weaknesses. This paper shows contribution to the development of failure risk analysis based on FMEA method. Contribution of the development of risk analysis methods is given through modification of traditional FMEA method by integration of artificial intelligence techniques, in this case, by integration of fuzzy logic and by including a few principles based on special classification of recognized failures. Thus, it is minimized effect of methodological inconsistency and some of other identified weaknesses of traditional FMEA method. FMEA method is improved, which provides more precise failure risk evaluation and thus better prediction and minimizing of unwanted occurrences (failures of elements, subsystems, components, etc., of technical systems). It was proved by comparative analysis of applied traditional FMEA method as well as modified FMEA method, hereinafter called “intelligent” FMEA method (IFMEA) on system of tires for city busses.  相似文献   

11.
Failure mode and effects analysis (FMEA) is a widely used risk management technique for identifying the potential failures from a system, design, or process and determining the most serious ones for risk reduction. Nonetheless, the traditional FMEA method has been criticized for having many deficiencies. Further, in the real world, FMEA team members are usually bounded rationality, and thus, their psychological behaviors should be considered. In response, this study presents a novel risk priority model for FMEA by using interval two‐tuple linguistic variables and an integrated multicriteria decision‐making (MCDM) method. The interval two‐tuple linguistic variables are used to capture FMEA team members' diverse assessments on the risk of failure modes and the weights of risk factors. An integrated MCDM method based on regret theory and TODIM (an acronym in Portuguese for interactive MCDM) is developed to prioritize failure modes taking experts' psychological behaviors into account. Finally, an illustrative example regarding medical product development is included to verify the feasibility and effectiveness of the proposed FMEA. By comparing with other existing methods, the proposed linguistic FMEA approach is shown to be more advantageous in ranking failure modes under the uncertain and complex environment.  相似文献   

12.
Failure modes and effects analysis (FMEA) is used widely to improve product quality and system reliability, employing a risk priority number (RPN) to assess the influence of failures. The RPN is a product of three indicators—severity (S), occurrence (O), and detection (D)—on a numerical scale from 1 to 10. However, the traditional RPN method has been criticized for its four chief shortcomings: its (1) high duplication rate; (2) assumption of equal importance of S, O, and D; (3) not following the ordered weighted rule; and (4) failure to consider the direct and indirect relationships between failure modes (FMs) and causes of failure (CFs). To resolve these drawbacks, we propose a novel approach, integrating grey relational analysis (GRA) and the decision-making trial and evaluation laboratory (DEMATEL) method, to rank the risk of failure, wherein the GRA is used to modify RPN values to lower duplications and the ordered weighted rule is followed; then, the DEMATEL method is applied to examine the direct and indirect relationships between FMs and CFs, giving higher priority when a single CF causes FMs to occur multiple times. Finally, an actual case of the TFT-LCD cell process is presented to verify the effectiveness of our method compared with other methods in providing decision-makers more reasonable reference information.  相似文献   

13.
This study aims at improving the effectiveness of failure mode and effect analysis (FMEA) technique. FMEA is a widely used technique for identifying and eliminating known or potential failures from system, design, and process. However, in conventional FMEA, risk factors of Severity (S), Occurrence (O), and Detection difficulty (D) are simply multiplied to obtain a crisp risk priority number without considering the subjectivity and vagueness in decision makers’ judgments. Besides, the weights for risk factors S, O, and D are also ignored. As a result, the effectiveness and accuracy of the FMEA are affected. To solve this problem, a novel FMEA approach for obtaining a more rational rank of failure modes is proposed. Basically, two stages of evaluation process are described: the determination of risk factors’ weights and ranking the risk for the failure modes. A rough group ‘Technique for Order Performance by Similarity to Ideal Solution’ (TOPSIS) method is used to evaluate the risk of failure mode. The novel approach integrates the strength of rough set theory in handling vagueness and the merit of TOPSIS in modeling multi‐criteria decision making. Finally, an application in steam valve system is provided to demonstrate the potential of the methodology under vague and subjective environment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
mode and effects analysis (FMEA) is an effective tool to assess the risk of a system or process under uncertain environment. However, how to handle the uncertainty in the subjective assessment is an open issue. In this paper, a novel method to deal with the uncertainty coming from subjective assessments of FMEA experts is proposed in the framework of Dempster–Shafer evidence theory. First, the uncertain degree of the assessment is measured by the ambiguity measure. Then, the uncertainty is transformed to the reliability of each FMEA expert and the relative importance of each risk factor. After that, the assessments from FMEA team will be fused with a discounting-based combination rule to address the potential conflict. Moreover, to avoid the situation that different risk priorities of failure modes may have the same ranking based on classical risk priority number method, the gray relational projection method (GRPM) is adopted for ranking risk priorities of failure modes. Finally, an application of the improved FMEA model in sheet steel production process verifies the reliability and validity of the proposed method.  相似文献   

15.
Failure mode and effects analysis (FMEA) is an engineering and management technique, which is widely used to define, identify, and eliminate known or potential failures, problems, errors, and risk from the design, process, service, and so on. In a typical FMEA, the risk evaluation is determined by using the risk priority number (RPN), which is obtained by multiplying the scores of the occurrence, severity, and detection. However, because of the uncertainty in FMEA, the traditional RPN has been criticized because of several shortcomings. In this paper, an evidential downscaling method for risk evaluation in FMEA is proposed. In FMEA model, we utilize evidential reasoning approach to express the assessment from different experts. Multi‐expert assessments are transformed to a crisp value with weighted average method. Then, Euclidean distance from multi‐scale is applied to construct the basic belief assignments in Dempster–Shafer evidence theory application. According to the proposed method, the number of ratings is decreased from 10 to 3, and the frame of discernment is decreased from 210 to 23, which greatly decreases the computational complexity. Dempster's combination rule is utilized to aggregate the assessment of risk factors. We illustrate a numerical example and use the proposed method to deal with the risk priority evaluation in FMEA. The results and comparison show that the proposed method is more flexible and reasonable for real applications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Failure mode and effects analysis (FMEA) has been extensively used in reliability engineering domain. Risk priority number (RPN), defined as the product of occurrence (O), severity (S), and detection (D) of a failure, is the most important measure used in FMEA for prioritizing risk. In this paper, a new evidential FMEA using linguistic term is presented. First, the linguistic terms have been applied in the form of assessment distribution, which enables the experts to express their assessments in a more realistic way and hence improving the applicability of the FMEA. Second, a novel method to transform the experts' linguistic judgments into basic probability assignments (BPAs) is proposed. Third, the flexibility of assigning a weight to each criterion in the FMEA provides a means of specifically identifying weak areas in the system/component studied. At the same time, the weights can be utilized as the discounting coefficients to address the problem existing in conflicting evidence combination. An example is illustrated to show the practical application of the proposed FMEA methodology in engineering. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Failure mode and effect analysis (FMEA), a multidisciplinary reliability analysis tool based on team evaluations, has been widely used in various industries. There are three critical issues in FMEA: the conversion of linguistic evaluations, the weights of risk factors, and the ranking mechanism of failure modes. Scholars have used various fuzzy theories and multi-attribute decision-making (MADM) methods to improve traditional FMEA, but there are still deficiencies. In this paper, the hesitant intuitionistic fuzzy set (HIFS), a concept that combines the intuitionistic fuzzy set (IFS) and the hesitant fuzzy set (HFS), is introduced into FMEA to convert linguistic evaluations. Some operators based on HIFS are proposed to process the converted data. Among them, a hesitant intuitionistic fuzzy comprehensive weighted Hamming distance (HIFCWHD) operator is proposed to compute the ordered comprehensive weight, effectively weakening the effect of extreme scores on results. The gray relational projection (GRP) method is adopted to determine the risk priority order of the failure modes. Finally, we give an illustrative case to demonstrate the effectiveness of the proposed FMEA method.  相似文献   

18.
Failure mode and effect analysis (FMEA) is a tool used to define, identify, and prevent known or unknown potential risks. An improved FMEA based on interval triangular fuzzy numbers (IVF) and fuzzy VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method is proposed in this study to solve problems of expression and processing of uncertain information, weights of risk factors, and ranking of failure modes in traditional FMEA. Linguistic variables are used to evaluate failure modes level and relative importance of risk factors and are expressed via interval-valued triangular fuzzy number. Determining the subjective weights of risk factors using fuzzy AHP, calculating the objective weights of risk factors using the extended VIKOR method, and obtaining the comprehensive weights of risk factors via ICWGT are proposed for solving the weight problem of risk factors. Finally, the fuzzy VIKOR method is used to rank risk priority of failure modes. The proposed method is used to evaluate workpiece box system of CNC gear milling machine and the results are compared with the findings of other methods to verify effectiveness and rationality of the proposed method.  相似文献   

19.
Traditionally, decisions on how to improve an operation are based on risk priority number (RPN) in the failure mode and effects analysis (FMEA). Many scholars questioned the RPN method and proposed some new methods to improve the decision process, but these methods are only measuring from the risks viewpoint while ignoring the importance of corrective actions. The corrective actions may be interdependent; hence, if the implementation of corrective actions is in proper order, selection may maximize the improvement effect, bring favorable results in the shortest times, and provide the lowest cost. This study aims to evaluate the structure of hierarchy and interdependence of corrective action by interpretive structural model (ISM), then to calculate the weight of a corrective action through the analytic network process (ANP), then to combine the utility of corrective actions and make a decision on improvement priority order of FMEA by utility priority number (UPN). Finally, it verifies the feasibility and effectiveness of this method by application to a case study. An erratum to this article can be found at  相似文献   

20.
Failure mode and effects analysis (FMEA) is a widely used technique for assessing the risk of potential failure modes in designs, products, processes, system, and services. One of the main problems with FMEA is the need to address a variety of assessments given by FMEA team members and the sequence of the failure modes according to the degree of risk factors. Many different methods have been proposed to improve the traditional FMEA, which is impractical when the risk assessments given by multiple experts to one failure mode are imprecise, incomplete, or inconsistent. However, the existing methods cannot adequately handle these types of uncertainties. In this paper, a new risk priority model based on D numbers and technique for the order of preference by similarity to ideal solution (TOPSIS) is proposed to evaluate the risk in FMEA. In the proposed model, the assessments given by the FMEA team members are represented by D numbers, where a new feasible and effective method can effectively represent the uncertain information. The TOPSIS method, a multicriteria decision‐making method is presented to rank the preference of failure modes with respect to risk factors. Finally, an application of the failure modes of the rotor blades of an aircraft turbine is provided to illustrate the efficiency of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号