首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 417 毫秒
1.
A method incorporating laboratory analysis of constituents that formed as reaction products was developed and used to determine the flux of groundwater through a zerovalent iron-based permeable reactive barrier (PRB) installed to treat U-contaminated groundwater. Concentrations of three nonvolatile constituents (Ca, U, and V) that formed as reaction products in the PRB were analyzed in 279 samples. Areal distributions of the reaction products indicate that groundwater flowed through all portions of the PRB and that nearly the entire volume of reactive material is treating the groundwater. Almost 9 t of calcium carbonate precipitated in the PRB during the first 2.7 yr of operation, but only 24 kg of combined U- and V-bearing minerals precipitated during the same period. Concentration gradients of Ca, U, and V dissolved in the groundwater indicate that a hydraulically upgradient portion of the PRB lost some reactivity during the first 2.7 yr of operation. Calculations that partially couple porosity changes to ZVI reactivity suggest that loss of reactivity may be more limiting than porosity reduction for long-term performance of the PRB. Calculations using groundwater concentration gradients and solid-phase concentrations indicate that the mean groundwater flux ranged from 11 to 24 L/min, considerably less than the design flux of 185 L/min. Flux values calculated with all three constituents were in good agreement. This method provides a more accurate determination of groundwater flux than is possible with flow sensor measurements, dissolved tracers, or Darcy's law computations.  相似文献   

2.
Solid-phase associations of chromium were examined in core materials collected from a full-scale, zerovalent iron permeable reactive barrier (PRB) at the U.S. Coast Guard Support Center located near Elizabeth City, NC. The PRB was installed in 1996 to treat groundwater contaminated with hexavalent chromium. After eight years of operation, the PRB remains effective at reducing concentrations of Cr from average values >1500 microg L(-1) in groundwater hydraulically upgradient of the PRB to values <1 microg L(-1) in groundwater within and hydraulically downgradient of the PRB. Chromium removal from groundwater occurs at the leading edge of the PRB and also within the aquifer immediately upgradient of the PRB. These regions also witness the greatest amount of secondary mineral formation due to steep geochemical gradients that result from the corrosion of zerovalent iron. X-ray absorption near-edge structure (XANES) spectroscopy indicated that chromium is predominantly in the trivalent oxidation state, confirming that reductive processes are responsible for Cr sequestration. XANES spectra and microscopy results suggest that Cr is, in part, associated with iron sulfide grains formed as a consequence of microbially mediated sulfate reduction in and around the PRB. Results of this study provide evidence that secondary iron-bearing mineral products may enhance the capacity of zerovalent iron systems to remediate Cr in groundwater, either through redox reactions at the mineral-water interface or by the release of Fe(II) to solution via mineral dissolution and/or metal corrosion.  相似文献   

3.
A permeable reactive barrier (PRB) containing zerovalent iron [Fe(O)] was installed at a former uranium milling site in Monticello, UT. A large-scale column experiment was conducted at the site to test the feasibility of Fe(O) to treat U prior to installing the PRB. Effluents from the field column experiment had pH values near 7.34, moderate decreases in C(IV) and Ca concentrations, and an elevated Fe concentration (27.1 mg/L). In contrast, groundwater exiting the PRB had a pH value of 9.82, decreases in C(IV) and Ca concentrations, and a low concentration of Fe (0.17 mg/L). A geochemical model was used to explain the chemical changes that occurred in both the field column experiment and the PRB. The model simulated the systems by the progressive irreversible dissolution of Fe(O). Modeling results indicated that a longer residence time in the PRB compared with the shorter residence time in the column contributed to the disparate effluent qualities. Prior to modeling, a controlled laboratory column experiment was conducted to help evaluate the dominant chemical mechanisms by which Fe(O) removes U from aqueous solutions. Results of the laboratory column experiment indicated that only a small amount of U could be adsorbed to ferric minerals, and, therefore, this mechanism was not considered in the model.  相似文献   

4.
This study investigated the reaction mechanisms of nitrate (NO3-) with zerovalent iron (ZVI) media under conditions relevantto groundwatertreatment using permeable reactive barriers (PRB). Reaction rates of NO3- with freely corroding and with cathodically or anodically polarized iron wires were measured in batch reactors. Tafel analysis and electrochemical impedance spectroscopy (EIS) were used to investigate the reactions occurring on the iron surfaces. Reduction of NO3- by corroding iron resulted in near stoichiometric production of NO2-, which did not measurably react in the absence of added Fe(II). Increasing NO3- concentrations resulted in increasing corrosion currents. However, EIS and Tafel analyses indicated that there was little direct reduction of NO3- at the ZVI surface, despite the presence of water reduction. This behavior can be attributed to formation of a microporous oxide on the iron surfaces that blocked reduction of NO3- and NO2- but did not block water reduction. This finding is consistent with previous observations that NO3- impedes reduction of organic compounds by ZVI. Nitrite concentrations greater than 4 mM resulted in anodic passivation of the iron, but passivation was not observed with NO3- concentrations as high as 96 mM. This indicates that the passivating oxide preventing NO3- reduction was permeable toward cation migration. Since reaction with Fe(0) can be excluded asthe mechanism for NO3- and NO2- reduction, reaction with Fe(II)-containing oxides coating the iron surface is the most likely reaction mechanism. This suggests that short-term batch tests requiring little turnover of reactive sites on the iron surface may overestimate long-term rates of NO3- removal because the effects of passivation are not apparent in batch tests conducted with high initial Fe(II) to NO3- ratios.  相似文献   

5.
The sorption and degradation of the chlorinated ethenes tetrachloroethene (PCE, 5 mg L(-1)) and trichloroethene (TCE, 10 mg L(-1)) were investigated in zero-valent iron systems (ZVI, 100 g L(-1)) in the presence of compounds common to contaminated groundwater with varying physicochemical properties. The potential competitors were chlorinated ethenes, monocyclic aromatic hydrocarbons, and humic acids. The effect of a complex matrix was tested with landfill contaminated groundwater. Nonlinear Freundlich isotherms adequately described chloroethene sorption to ZVI. In the presence of the more hydrophobic PCE (5 mg L(-1)), TCE sorption and degradation decreased by 33% and 30%, respectively, while TCE (10 mg L(-1)) decreased PCE degradation by 30%. In the presence of nonreactive hydrophobic hydrocarbons (i.e., benzene, toluene, and m-xylene at 100 mg L(-1)), TCE and PCE sorption decreased by 73% and 55%, respectively. The presence of the hydrocarbons had no effect on TCE degradation and increased PCE reduction rates by 50%, suggesting that the displacement of the chloroethenes from the sorption sites by the aromatic hydrocarbons enhanced the degradation rates. Humic acids did not interfere significantly with chloroethene sorption or with TCE degradation but lowered PCE degradation kinetics by 36% when present at high concentrations (100 mg L(-1)). The landfill groundwater with an organic carbon content of 109 mg L(-1) C had no effect on chloroethene sorption but inhibited TCE and PCE degradation by 60% and 70%, respectively.  相似文献   

6.
The effectiveness of in situ treatment using zero-valent iron (ZVI) for nonaqueous phase or significant sediment-associated contaminant mass can be limited by relatively low rates of mass transfer to bring contaminants in contact with the reactive media. For a field test in a trichloroethene (TCE) source area, combining moderate-temperature subsurface electrical resistance heating with in situ ZVI treatment was shown to accelerate TCE treatment by a factor of about 4 based on organic daughter products and a factor about 8 based on chloride concentrations. A mass-discharge-based analysis was used to evaluate reaction, dissolution, and volatilization processes at ambient groundwater temperature (~10 °C) and as temperature was increased up to about 50 °C. Increased reaction and contaminant dissolution were observed with increased temperature, but vapor- or aqueous-phase migration of TCE out of the treatment zone was minimal during the test because reactions maintained low aqueous-phase TCE concentrations.  相似文献   

7.
To reveal what controls the concentration and distribution of possibly hazardous (Mn, U, Se, Cd, Bi, Pb) and nonhazardous (Fe, V, Mo, PO(4)) trace elements in groundwater of the Bengal delta, we mapped their concentrations in shallow groundwater (<60 mbgl) across 102 km(2) of West Bengal. Only Mn is a potential threat to health, with 55% of well water exceeding 0.3 mg/L, the current Indian limit for drinking water in the absence of an alternate source, and 75% exceeding the desirable limit of 0.1 mg/L. Concentrations of V are <3 μg/L. Concentrations of U, Se, Pb, Ni, Bi, and Cd, are below WHO guideline values. The distributions of Fe, Mn, As, V, Mo, U, PO(4), and δ(18)O in groundwater reflect subsurface sedimentology and sources of water. Areas of less negative δ(18)O reveal recharge by sources of evaporated water. Concentrations of Fe, As, Mo, and PO(4) are high in palaeo-channel groundwaters and low in palaeo-interfluvial groundwaters. Concentrations of U, V, and Mn, are low in palaeo-channel groundwaters and high in palaeo-interfluvial groundwaters. Concentrations of Fe and Mn are highest (18 and 6 mg/L respectively) at dual reduction-fronts that form strip interfaces at depth around the edges of palaeo-interfluvial aquifers. The fronts form as focused recharge carries dissolved organic carbon into the aquifer margins, which comprise brown, iron-oxide bearing, sand. At the Mn-reduction front, concentrations of V and Mo reach peak concentrations of 3 μg/L. At the Fe-reduction front, concentrations of PO(4) and As reach concentrations 3 mg/L and 150 μg/L respectively. Many groundwaters contain >10 mg/L of Cl, showing that they are contaminated by Cl of anthropogenic origin and that organic matter from in situ sanitation may contribute to driving reduction.  相似文献   

8.
Two reactive media [zerovalent iron (ZVI, Fisher Fe0) and amorphous hydrous ferric oxide (HFO)-incorporated porous, naturally occurring aluminum silicate diatomite [designated as Fe (25%)-diatomite]], were tested for batch kinetic, pH-controlled differential column batch reactors (DCBRs), in small- and large-scale column tests (about 50 and 900 mL of bed volume) with groundwater from a hazardous waste site containing high concentrations of arsenic (both organic and inorganic species), as well as other toxic or carcinogenic volatile and semivolatile organic compounds (VOC/SVOCs). Granular activated carbon (GAC) was also included as a reactive media since a permeable reactive barrier (PRB) at the subject site would need to address the hazardous VOC/SVOC contamination as well as arsenic. The groundwater contained an extremely high arsenic concentration (341 mg L(-1)) and the results of ion chromatography and inductively coupled plasma mass spectrometry (IC-ICP-MS) analysis showed that the dominant arsenic species were arsenite (45.1%) and monomethyl arsenic acid (MMAA, 22.7%), while dimethyl arsenic acid (DMAA) and arsenate were only 2.4 and 1.3%, respectively. Based on these proportions of arsenic species and the initial As-to-Fe molar ratio (0.15 molAs mole(-1)), batch kinetic tests revealed that the sorption density (0.076 molAs molFe(-1)) for Fe (25%)-diatomite seems to be less than the expected value (0.086 molAs molFe(-1) calculated from the sorption density data reported by Lafferty and Loeppert (Environ. Sci. Technol. 2005, 39, 2120-2127), implying that natural organic matters (NOMs) might play a significant role in reducing arsenic removal efficiency. The results of pH-controlled DCBR tests using different synthetic species of arsenic solution showed that the humic acid inhibited the MMAA removal of Fe (25%)-diatomite more than arsenite. The mixed system of GAC and Fe (25%)-diatomite increased the arsenic sorption speed to more than that of either individual media alone. This increase might be deduced by the fact that the addition of GAC could enhance arsenic removal performance of Fe (25%)-diatomite through removing comparably high portions of NOMs. Small- and large-scale column studies demonstrated that the empty bed contact time (EBCT) significantly affected sorpton capacities at breakthrough (C = 0.5 C0) forthe Fe0/sand (50/50, w/w) mixture, but notfor GAC preloaded Fe (25%)-diatomite. In the large-scale column tests with actual groundwater conditions, the GAC preloaded Fe (25%)-diatomite effectively reduced arsenic to below 50 microg L(-1) for 44 days; additionally, most species of VOC/SVOCs were also simultaneously attenuated to levels below detection.  相似文献   

9.
The combined removal of chlorinated ethenes and heavy metals from a simulated groundwater matrix by zerovalent iron (ZVI) was investigated. In batch, Ni (5-100 mg L(-1)) enhanced trichloroethene (TCE, 10 mg L(-1)) reduction by ZVI (100 g L(-1)) due to catalytic hydrodechlorination by bimetallic Fe0/Ni0. Cr(VI) or Zn (5-100 mg L(-1)) lowered TCE degradation rates by a factor of 2 to 13. Cr(VI) (100 mg L(-1)) in combination with Zn or Ni (50-100 mg L(-1)) inhibited TCE degradation. Addition of 20% H2(g) in the headspace, or of Zn (50-100 mg L(-1)), enhanced TCE removal in the presence of Ni and Cr(VI). Sorption of Zn to ZVI alleviated the Cr(VI) induced inhibition of bimetallic Fe0/Ni0 apparently due to release of protons necessary for TCE hydrodechlorination. In continuous ZVI columns treating tetrachloroethene (PCE, 1-2 mg L(-1)) and TCE (10 mg L(-1)), and a mixture of the metals Cr(VI), Zn(II), and Ni(II) (5 mg (L-1)), the PCE removal efficiency decreased from 100% to 90% in columns operated without heavy metals. The PCE degradation efficiency remained above 99% in columns receiving heavy metals as long as Ni was present. The findings of this study indicate the feasibility and limitations of the combined treatment of mixtures of organic and inorganic pollutants by ZVI.  相似文献   

10.
We performed three column tests to study the behavior of permeable reactive barrier (PRB) materials to remove arsenic under dynamic flow conditions in the absence as well as in the presence of added phosphate and silicate. The column consisted of a 10.3 cm depth of 50:50 (w:w, Peerless iron:sand) in the middle and a 10.3 cm depth of a sediment from Elizabeth City, NC, in both upper and lower portions of the 31-cm-long glass column (2.5 cm in diameter) with three side sampling ports. The flow velocity (upflow mode) was maintained at 4.3 m d(-1) during the 3-4-month experiments. As expected, dissolved As concentrations in different positions of the column generally followed the order: column influent > bottom port effluent > middle port effluent > top port effluent > column effluent. The steady-state As removal in the middle Peerless iron and sand mixture zone might be attributed to the continuous supply of corroded iron in the form of iron oxides and hydroxides that served as the sorbents for both As(V) and As(III). Consistent with previous batch study findings, dissolved phosphate (0.5 or 1 mg of P L(-1)) and silicate (10 or 20 mg of Si L(-1)) showed strong inhibition for As(V) and As(III) (1 mg of As(V) L(-1) + 1 mg of As(III) L(-1) in 7 mM NaCl + 0.86 mM CaSO4) removal by Peerless iron in the column tests. The presence of combined phosphate and silicate resulted in earlier breakthrough (C = 0.5C0) and earlier complete breakthrough of dissolved arsenic relative to absence of added phosphate and silicate in the bottom port effluent. Competition between As(V)/As(III) and phosphate/silicate forthe sorption sites on the corrosion products of Peerless iron seems to be the cause of the observations. This effect is especially important in the case of silicate for designing a PRB of zerovalent iron for field use because dissolved silicate is ubiquitous in terrestrial waters.  相似文献   

11.
The effects of the construction methods, materials of reactive media and groundwater constituents on the environmental impacts of a permeable reactive barrier (PRB) were evaluated using life cycle assessment (LCA). The PRB is assumed to be installed at a simulated site contaminated by either Cr(VI) alone or Cr(VI) and As(V). Results show that the trench-based construction method can reduce the environmental impacts of the remediation remarkably compared to the caisson-based method due to less construction material consumption by the funnel. Compared to using the zerovalent iron (Fe(0)) and quartz sand mixture, the use of the Fe(0) and iron oxide-coated sand (IOCS) mixture can reduce the environmental impacts. In the presence of natural organic matter (NOM) in groundwater, the environmental impacts generated by the reactive media were significantly increased because of the higher usage of Fe(0). The environmental impacts are lower by using the Fe(0) and IOCS mixture in the groundwater with NOM, compared with using the Fe(0) and quartz sand mixture. Since IOCS can enhance the removal efficiency of Cr(VI) and As(V), the usage of the Fe(0) can be reduced, which in turn reduces the impacts induced by the reactive media.  相似文献   

12.
The bulk of arsenic (As) at contaminated sites is frequently associated with iron (hydr)oxides. Various studies ascribe increasing dissolved As concentrations to the transformation of iron (hydr)oxides into iron sulfides, which is initiated by dissolved sulfide. We investigated whetherthis processes can be utilized as a source treatment approach using compost-based permeable reactive barriers (PRB), which promote microbial sulfate reduction. Arsenic-bearing aquifer sedimentfrom a contaminated industrial site showed a decrease in As content of <10% after 420 days of percolation with sulfide-free artificial groundwater. In contrast, water that had previously passed through organic matter and exhibited sulfide concentrations of 10-30 mg/L decreased As content in the sediment by 87% within 360 days. X-ray diffraction showed no arsenic sulfides, but XANES spectra (X-ray absorption near edge structure) and associated linear combinations revealed that adsorbed arsenate of the original sediment was in part reduced to arsenite and indicated the formation of minor amounts of a substance that contains As and sulfur. The speciation of dissolved As changed from initially As(V)-dominated to As(III)-dominated after sulfide flushing was started, which increases the mobility of As. Because sulfide can be supplied not only by compost-based PRBs but also by direct injection, sulfide flushing has a wide range of application for the source treatment of arsenic.  相似文献   

13.
Zerovalent iron (ZVI) nanoparticles of various sizes were synthesized by applying various types of carboxymethyl cellulose (CMC) as a stabilizer. At an initial Fe2+ concentration of 0.1 g/L and with 0.2% (w/w) of CMC (Mr = 90 000), nanoparticles with a hydrodynamic diameter of 18.6 nm were obtained. Smaller nanoparticles were obtained as the CMC/Fe2+ molar ratio was increased. When the initial Fe2+ concentration was increased to 1 g/L, only 1/4 of the CMC was needed to obtain similar nanoparticles. On an equal weight basis, CMC with a greater Mr or higher D.S. (degree of substitution) gave smaller nanoparticles, and lower the synthesizing temperature favored the formation of smaller nanoparticles. It is proposed that CMC stabilizes the nanoparticles through the accelerating nucleation of Fe atoms during the formation of ZVI nanoparticles and, subsequently, forms a bulky and negatively charged layer via sorption of CMC molecules on the ZVI nanoparticles, thereby preventing the nanoparticles from agglomeration through electrosteric stabilization. In agreement with the classical coagulation theory, the presence of high concentrations of cations (Na+ and Ca2+) promoted agglomeration of the nanoparticles. The strategy for manipulating the size of the ZVI nanoparticles may facilitate more effective applications of ZVI nanoparticles for in situ dechlorination in soils and groundwater.  相似文献   

14.
Groundwater contaminated with TCE is commonly treated with a permeable reactive barrier (PRB) constructed with zero-valence iron. The cost of iron has driven a search for less costly alternatives, and composted plant mulch has been used as an alternative at several sites. A column study was conducted that simulated conditions in a PRB at Altus Air Force Base, Oklahoma. The reactive matrix was 50% (v/v) shredded tree mulch, 10% cotton gin trash, and 40% sand. The mean residence time of groundwater in the columns was 17 days. The estimated retardation factor for TCE was 12. TCE was supplied at concentrations near 20 microM. Over 793 days of operation, concentrations of TCE in the column effluents varied from 0.1% to 2% of the column influents. Concentrations of cis-DCE, vinyl chloride, ethylene, ethane, and acetylene could account for 1% of the TCE that was removed; however, up to 56% of 13C added as [1,2-13C] TCE in the column influents was recovered as 13C in carbon dioxide. After 383 and 793 d of operation, approximately one-half of the TCE removal was associated with abiotic reactions with FeS that accumulated in the reactive matrix.  相似文献   

15.
Multiple column experiments were performed using two commercial iron materials to evaluate the necessity and usefulness of preliminary investigations in permeable reactive barrier (PRB) design for chlorinated organics. Experiments were performed with contaminated groundwater and involved fresh iron granules or altered iron material excavated from PRBs. The determination of first-order rate coefficients by global nonlinear least-squares fittings indicated a variability in rate coefficients on 1 or 2 orders of magnitude. Geometric mean values of surface area normalized rate coefficients (in 10(-5) L m(-2) h(-1)) for fresh gray cast iron and iron sponge, respectively, are: tetrachloroethene (4.5, 2.6), trichloroethene (8.1, 3.3), cis-1,2-dichloroethene (3.1, 2.9), trans-1,2-dichloroethene (9.5, 5.3), 1,1-dichloroethene (4.0, 4.4), and vinyl chloride (1.6, 6.1). The increasing rate coefficients with decreasing grade of chlorination, which characterize degradation at iron sponge are linearly related to diffusion coefficients in water, suggesting diffusion limitation in the degradation process for this particular material, possibly due to a high inner surface. The variability in rate coefficients seems to be too high to use mean rate coefficients from published studies in the design procedure of PRBs, and variabilities cannot be related to groundwater characteristics, waterflow through the reactive cells, or secondary corrosion reactions.  相似文献   

16.
Uranium binding to bone charcoal and bone meal apatite materials was investigated using U L(III)-edge EXAFS spectroscopy and synchrotron source XRD measurements of laboratory batch preparations in the absence and presence of dissolved carbonate. Pelletized bone char apatite recovered from a permeable reactive barrier (PRB) at Fry Canyon, UT, was also studied. EXAFS analyses indicate that U(VI) sorption in the absence of dissolved carbonate occurred by surface complexation of U(VI) for sorbed concentrations < or = 5500 microg U(VI)/g for all materials with the exception of crushed bone char pellets. Either a split or a disordered equatorial oxygen shell was observed, consistent with complexation of uranyl by the apatite surface. A second shell of atoms at a distance of 2.9 A was required to fit the spectra of samples prepared in the presence of dissolved carbonate (4.8 mM total) and is interpreted as formation of ternary carbonate complexes with sorbed U(VI). A U-P distance at 3.5-3.6 A was found for most samples under conditions where uranyl phosphate phases did not form, which is consistent with monodentate coordination of uranyl by phosphate groups in the apatite surface. At sorbed concentrations > or = 5500 microg U(VI)/g in the absence of dissolved carbonate, formation of the uranyl phosphate solid phase, chernikovite, was observed. The presence of dissolved carbonate (4.8 mM total) suppressed the formation of chernikovite, which was not detected even with sorbed U(VI) up to 12,300 microg U(VI)/g in batch samples of bone meal, bone charcoal, and reagent-grade hydroxyapatite. EXAFS spectra of bone char samples recovered from the Fry Canyon PRB were comparable to laboratory samples in the presence of dissolved carbonate where U(VI) sorption occurred by surface complexation. Our findings demonstrate that uranium uptake by bone apatite will probably occur by surface complexation instead of precipitation of uranyl phosphate phases under the groundwater conditions found at many U-contaminated sites.  相似文献   

17.
This paper describes the results of the first field-scale demonstration conducted to evaluate the performance of nanoscale emulsified zero-valent iron (EZVI) injected into the saturated zone to enhance in situ dehalogenation of dense, nonaqueous phase liquids (DNAPLs) containing trichloroethene (TCE). EZVI is an innovative and emerging remediation technology. EZVI is a surfactant-stabilized, biodegradable emulsion that forms emulsion droplets consisting of an oil-liquid membrane surrounding zero-valent iron (ZVI) particles in water. EZVI was injected over a five day period into eight wells in a demonstration test area within a larger DNAPL source area at NASA's Launch Complex 34 (LC34) using a pressure pulse injection method. Soil and groundwater samples were collected before and after treatment and analyzed for volatile organic compounds (VOCs) to evaluate the changes in VOC mass, concentration and mass flux. Significant reductions in TCE soil concentrations (>80%) were observed at four of the six soil sampling locations within 90 days of EZVI injection. Somewhat lower reductions were observed at the other two soil sampling locations where visual observations suggest that most of the EZVI migrated up above the target treatment depth. Significant reductions in TCE groundwater concentrations (57 to 100%) were observed at all depths targeted with EZVI. Groundwater samples from the treatment area also showed significant increases in the concentrations of cis-1,2-dichloroethene (cDCE), vinyl chloride (VC) and ethene. The decrease in concentrations of TCE in soil and groundwater samples following treatment with EZVI is believed to be due to abiotic degradation associated with the ZVI as well as biodegradation enhanced by the presence of the oil and surfactant in the EZVI emulsion.  相似文献   

18.
Large volumes of oil sands process-affected water (OSPW) are produced during the extraction of bitumen from oil sands in Alberta, Canada. The degradation of a model naphthenic acid, cyclohexanoic acid (CHA), and real naphthenic acids (NAs) from OSPW were investigated in the presence of peroxydisulfate (S(2)O(8)(2-)) and zerovalent iron (ZVI). For the model compound CHA (50 mg/L), in the presence of ZVI and 500 mg/L S(2)O(8)(2-), the concentration decreased by 45% after 6 days of treatment at 20 °C, whereas at 40, 60, and 80 °C the concentration decreased by 20, 45 and 90%, respectively, after 2 h of treatment. The formation of chloro-CHA was observed during ZVI/S(2)O(8)(2-) treatment of CHA in the presence of chloride. For OSPW NAs, in the presence of ZVI alone, a 50% removal of NAs was observed after 6 days of exposure at 20 °C. The addition of 100 mg/L S(2)O(8)(2-) to the solution increased the removal of OSPW NAs from 50 to 90%. In absence of ZVI, a complete NAs removal from OSPW was observed in presence of 2000 mg/L S(2)O(8)(2-) at 80 °C. The addition of ZVI increased the efficiency of NAs oxidation by S(2)O(8)(2-) near room temperature. Thus, ZVI/S(2)O(8)(2-) process was found to be a viable option for accelerating the degradation of NAs present in OSPW.  相似文献   

19.
Landfills have the potential to mobilize arsenic via induction of reducing conditions in groundwater and subsequent desorption from or dissolution of arsenic-bearing iron phases. Laboratory incubation experiments were conducted with materials from a landfill where such processes are occurring. These experiments explored the potential for induced sulfate reduction to immobilize dissolved arsenic in situ. The native microbial community at this site reduced sulfate in the presence of added acetate. Acetate respiration and sulfate reduction were observed concurrent with dissolved iron concentrations initially increasing from 0.6 microM (0.03 mg L(-1)) to a maximum of 111 microM (6.1 mg L(-1)) and subsequently decreasing to 0.74 microM (0.04 mg L(-1)). Dissolved arsenic concentrations initially covaried with iron but subsequently increased again as sulfide accumulated, consistent with the formation of soluble thioarsenite complexes. Dissolved arsenic concentrations subsequently decreased again from a maximum of 2 microM (148 microg L(-1)) to 0.3 microM (22 microg L(-1)), consistent with formation of sulfide mineral phases or increased arsenic sorption at higher pH values. Disequilibrium processes may also explain this second arsenic peak. The maximum iron and arsenic concentrations observed in the lab represent conditions most equivalent to the in situ conditions. These findings indicate that enhanced sulfate reduction merits further study as a potential in situ groundwater arsenic remediation strategy at landfills and other sites with elevated arsenic in reducing groundwater.  相似文献   

20.
Iron and sulfur reducing conditions generally develop in permeable reactive barrier systems (PRB) constructed to treat contaminated groundwater. These conditions allow formation of FeS mineral phases. FeS readily degrades TCE, but a transformation of FeS to FeS2 could dramatically slow the rate of TCE degradation in the PRB. This study uses acid volatile sulfide (AVS) and chromium reducible sulfur (CRS) as probes for FeS and FeS2 to investigate iron sulfide formation and transformation in a column study and PRB field study dealing with TCE degradation. Solid phase iron speciation shows that most of the iron is reduced and sulfur partitioning measurements show that AVS and CRS coexist in all samples, with the conversion of AVS to CRS being most significant in locations with potential oxidants available. In the column study, 54% of FeS was transformed to FeS2 after 2.4 years. In the field scale PRB, 43% was transformed after 5.2 years. Microscopy reveals FeS, Fe3S4 and FeS2 formation in the column system; however, only pyrite formation was confirmed byX-ray diffraction. The polysulfide pathway is most likely the primary mechanism of FeS transformation in the system, with S0 as an intermediate species formed through H2S oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号