首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gibson CT  Carnally S  Roberts CJ 《Ultramicroscopy》2007,107(10-11):1118-1122
In atomic force microscopy (AFM) the accuracy of data is often limited by the tip geometry and the effect on this geometry of wear. One way to improve the tip geometry is to attach carbon nanotubes (CNT) to AFM tips. CNTs are ideal because they have a small diameter (typically between 1 and 20nm), high aspect ratio, high strength, good conductivity, and almost no wear. A number of methods for CNT attachment have been proposed and explored including chemical vapour deposition (CVD), dielectrophoresis, arc discharge and mechanical attachment. In this work we will use CVD to deposit nanotubes onto a silicon surface and then investigate improved methods to pick-up and attach CNTs to tapping mode probes. Conventional pick-up methods involve using standard tapping mode or non-contact mode so as to attach only those CNTs that are aligned vertically on the surface. We have developed improved methods to attach CNTs using contact mode and reduced set-point tapping mode imaging. Using these techniques the AFM tip is in contact with a greater number of CNTs and the rate and stability of CNT pick-up is improved. The presence of CNTs on the modified AFM tips was confirmed by high-resolution AFM imaging, analysis of the tips dynamic force curves and scanning electron microscopy (SEM).  相似文献   

2.
Suzuki Y  Enoki H  Akiba E 《Ultramicroscopy》2005,104(3-4):226-232
Apparatus comprising a scanning tunneling microscopy (STM) and an atomic force microscopy (AFM) has been developed for use under supra-atmospheres. Observations of highly oriented pyrolytic graphite (HOPG) were carried out by STM and contact AFM operating in air and various gas atmospheres (hydrogen, helium, neon and argon) under pressures up to 1.1 MPa. Atomic resolution images of the HOPG were obtained by STM in all the gas atmospheres studied. However, it was found that the presence of water vapor gave rise to a noise current at increased pressures. Using contact AFM, the atomic resolution in an argon atmosphere decreased with increasing pressure, while atomic images were obtained under the other gas atmospheres at 1.1 MPa.  相似文献   

3.
Koehne JE  Stevens RM  Zink T  Deng Z  Chen H  Weng IC  Liu FT  Liu GY 《Ultramicroscopy》2011,111(8):1155-1162
While atomic force microscopy (AFM) has become a promising tool for visualizing membrane morphology of cells, many studies have reported the presence of artifacts such as cliffs on the edges of cells. These artifacts shield important structural features such as lamellopodia, filopodia, microvilli and membrane ridges, which represent characteristic status in signaling processes such as spreading and activation. These cliff-like edges arise from a premature contact of the probe side contact with the cell prior to the probe top apex-cell contact. Carbon nanotube (CNT) modified AFM probes were utilized to address this drawback. Using rat basophilic leukemia (RBL) cells, this work revealed that CNT probes diminish cliff-like artifacts and enabled visualization of entire membrane morphology and structural features in three dimensions. The high aspect ratio of CNT probes provides a very effective remedy to the cliff-like artifacts as well as tip convolution of conventional probes, which shall enhance the validity and application of AFM in cellular biology research.  相似文献   

4.
李瑞  胡元中  王慧 《润滑与密封》2007,32(11):15-17,77
采用分子动力学模拟方法研究了常温300 K时,公度、不公度情况下,单壁碳纳米管CNT(10,10)在石墨基底上的运动、摩擦行为。计算中首先使碳纳米管在基底上弛豫平衡,而后施加持续时间500 fs的固定外力,撤去外力后碳纳米管在基底上减速至相对基底静止。结果表明,碳纳米管在石墨基底上不同的放置位置决定了它与基底接触面的微观构型,从而决定了碳纳米管的运动、摩擦规律。公度时,碳纳米管先在基底上滑动,摩擦力、平动能均呈现周期性起伏,之后碳纳米管在基底上滚动、滑动、翻转,滑动、转动之间运动形式的转变提高了能量耗散,增大了摩擦力,非公度时摩擦力约为公度时的70%。非公度时碳纳米管一直在基底上滑动,平动能和摩擦力不具有周期性。  相似文献   

5.
The atomic force microscope (AFM) offers the possibility to image the topography of insulating as well as conductive surfaces. Highly oriented pyrolytic graphite (HOPG) was chosen as an example for a layered material and compared to single crystalline lithium fluoride (LiF). Both materials are easily prepared and inert at ambient pressure. Furthermore they are well characterized by Helium atom scattering experiments and other techniques. On HOPG atomic resolution has been achieved. Distortions can be observed which we interpret as a frictional effect. In addition we performed large area scans where we seldomly observed dislocations. For the first time we present measurements on LiF, showing steps of one unit cell height. On larger areas the surface of LiF showed terraces, separated by steps of variable heights, ranging from a few ångströms to 100 Å. We used a static method to get information about the distance dependence of the force between lever and sample. By slowly expanding and retracting the sample piezo and simultaneous measurement of the lever deflection, plots were recorded, showing the force as a function of sample position. The results were compared with theoretical calculations. We could determine the tip radius and found differences between LiF and HOPG being characteristic for the samples.  相似文献   

6.
In the past years the self‐assembly of amyloid‐like peptides has attracted increasing attentions, because it is highly related to neurodegenerative diseases and has a potential for serving as nanomaterial to fabricate novel and useful nanostructures. In this paper, we focused on the role of interfacial conditions in the self‐assembly of an amyloid‐like peptide, termed Pep11. It was found that, when dissolved in bulk solutions, Pep11 formed into β‐sheet structures and assembled into long filaments in several hours, as revealed by Thioflavin T fluorescence and transmission electron microscopy (TEM) morphology characterization, respectively. When the peptide solution was added onto a mica/HOPG substrate, peptide filaments with three preferred orientations with an angle of 60° to each other were formed immediately, as imaged in situ by atomic force microscopy (AFM). However, the kinetics in filament formation and the morphologies of the formed beta sheet either on HOPG and mica or in bulk solutions were quite different. These results indicate that the interfacial properties dramatically affect the peptide self‐assembly process. Microsc. Res. Tech. 78:375–381, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
One of the advantages of atomic force microscopy (AFM) is that it can accurately measure the heights of targets on flat substrates. It is difficult, however, to determine the shape of nanoparticles on rough surfaces. We therefore propose a curvature-reconstruction method that estimates the sizes of particles by fitting sphere curvatures acquired from raw AFM data. We evaluated this fitting estimation using 15-, 30-, and 50-nm gold nanoparticles on mica and confirmed that particle sizes could be estimated within 5% from 20% of their curvature measured using a carbon nanotube (CNT) tip. We also estimated the sizes of nanoparticles on the rough surface of dried cells and found we also can estimate the size of those particles within 5%, which is difficult when we only used the height information. The results indicate the size of nanoparticles even on rough surfaces can be measured by using our method and a CNT tip.  相似文献   

8.
Superlubricity: a state of vanishing friction   总被引:1,自引:0,他引:1  
Motohisa Hirano 《Wear》2003,254(10):932-940
The state of vanishing friction called “superlubricity” is discussed from theoretical and experimental viewpoints. We study the friction system consisting of two contacting surfaces, and derive the condition for the non-adiabatic motion of atoms to occur. By examining it for various systems, it is concluded that atoms move adiabatically, that is, that the superlubricity appears in realistic systems. It is shown that superlubricity appears when the system satisfies two conditions: each atom follows its equilibrium position adiabatically, and the contacting crystal surfaces are incommensurate. The adiabatic motion of atoms is likely to occur in two- and three-dimensional system rather than in one-dimensional system, it is then emphasized that the high dimensionality of contacting surfaces is crucial for the appearance of superlubricity. Friction measurements of atomically clean surfaces has been performed by using the scanning tunneling microscopy (STM) in ultra-high vacuum. The STM achieves the sliding with the elastic contact of the surfaces as in the attractive mode of atomic force microscopy (AFM) operation. It is shown that friction of magnitude 8×10−8 N, which is comparable to the calculated value, is observed when the contact is commensurate, while friction is not observed in this measurement, which can resolve the friction forces of 3×10−9 N, when the contact is incommensurate. It is thus concluded that the observed frictional anisotropies stemming from the differences in the commensurability of the contacting surfaces imply the existence of superlubricity.  相似文献   

9.
Carbon nanotube (CNT) tips in tapping mode atomic force microscopy (AFM) enable very high-resolution imaging, measurements, and manipulation at the nanoscale. We present recent results based on experimental analysis that yield new insights into the dynamics of CNT probe tips in tapping mode AFM. Experimental measurements are presented of the frequency response and dynamic amplitude-distance data of a high-aspect-ratio multi-walled (MW) CNT tip. Higher harmonics of the microcantilever are measured in frequency ranges corresponding to attractive regime and the repulsive regime where the CNT buckles dynamically. Surface scanning is performed using a MWCNT tip on a SiO(2) grating to verify the imaging instabilities associated with MWCNT buckling when used with normal control schemes in the tapping mode. Lastly, the choice of optimal setpoints for tapping mode control using CNT tip are discussed using the experimental results.  相似文献   

10.
Zhao L  Liu Z  Zu Y  Zhou Z  Sun T 《Scanning》2012,34(1):68-75
Adsorption of circular DNA onto bare highly oriented pyrolytic graphite (HOPG) surfaces by the addition of Mg2+, Ni2+, and Cu2+ has been investigated by atomic force microscopy (AFM). AFM results revealed that the topography and height of DNA on HOPG surface by the addition of different metal ions are quite different. After the addition of Mg2+ for incubation, DNA molecules tend to form many loops on HOPG surfaces, which are derived from the crossover of intramolecular and intermolecular chains. After the addition of Ni2+, DNA molecules can form network on HOPG surfaces, and the density of DNA network was significantly increased with increasing DNA concentration. Consequently, dense DNA network can be obtained by using relatively low concentration of DNA and Ni2+. As for the addition of Cu2+, angular DNA loops composed of flat chains were observed. The observed flat DNA chains with an average height of 0.52 nm can be ascribed to Cu2+ insert into the site between bases and phosphate group of DNA inducing denaturation of DNA molecules. This study is very helpful for understanding the interactions of metal ions and DNA molecules, and for constructing various DNA structures on the carbonaceous surfaces. SCANNING 34: 68–75, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

11.
The accuracy of topography imaging in contact force mode of atomic force microscopy (AFM) depends on the one-to-one corresponding relationship between the cantilever deflection and the tip–sample distance, whereas such a relationship cannot be always achieved in the presence of friction and incline angle of sample surface. Recently, we have developed a novel operation mode in which we keep the van der Waals force as constant instead of the applied normal force, to eliminate the effect of inclination angle and friction on topography imaging in the contact force mode. We have improved our AFM to enable the new operation mode for validation. Comparative experiments have been performed and the results have shown that the effect of friction and inclination angle on topography imaging in contact mode of AFM can be eliminated or at least decreased effectively by working in the new operation mode we present.  相似文献   

12.
Carbon nanotube (CNT)-tipped atomic force microscopy (AFM) probes have shown a significant potential for obtaining high-resolution imaging of nanostructure and biological materials. In this paper, we report a simple method to fabricate single-walled carbon nanotube (SWNT) nanoprobes for AFM using the Langmuir–Blodgett (LB) technique. Thiophenyl-modified SWNTs (SWNT-SHs) through amidation of SWNTs in chloroform allowed to be spread and form a stable Langmuir monolayer at the water/air interface. A simple two-step transfer process was used: (1) dipping conventional AFM probes into the Langmuir monolayer and (2) lifting the probes from the water surface. This results in the attachment of SWNTs onto the tips of AFM nanoprobes. We found that the SWNTs assembled on the nanoprobes were well-oriented and robust enough to maintain their shape and direction even after successive scans. AFM measurements of a nano-porous alumina substrate and deoxyribonucleic acid using SWNT-modified nanoprobes revealed that the curvature diameter of the nanoprobes was less than 3 nm and a fine resolution was obtained than that from conventional AFM probes. We also demonstrate that the LB method is a scalable process capable of simultaneously fabricating a large number of SWNT-modified nanoprobes.  相似文献   

13.
Tribological investigations of macroscopic lubricated sliding contacts are critical for a wide range of industrial applications including automotive engines, gears, bearings, and any other contacting surfaces in relative motion. However, the inability of existing techniques to access buried sliding interfaces with high spatial resolution inhibits the development of fundamental insights into the tribological processes at play. Here we demonstrate a novel and general in situ method, based on atomic force microscopy (AFM), in which micrometer-scale spherical probes are attached to a standard microfabricated AFM cantilever which is then slid over a substrate while immersed in a liquid lubricant. In this case, steel colloidal probes and steel substrates were used, and the contact was immersed in a commercial polyalphaolefin oil with zinc dialkyl dithiophosphate (ZDDP) additive at both room temperature and 100 °C, but the method can be used for a broad range of material combinations, lubricants, and temperatures. We demonstrate that the in situ measurements of friction force and the morphological evolution of the tribochemical films on the substrate can be simultaneously achieved with nanometer-level spatial resolution. In addition, we demonstrate that the sliding zone is readily accessible for further characterization with higher spatial resolution using standard AFM probes with nanometer-scale tip radii. Ex situ characterization of the micrometer-scale probe and the sample is also feasible, which is demonstrated by acquiring high-resolution AFM topographic imaging of the final state of the probe.  相似文献   

14.
The carbon nano-tube (CNT) has ideal properties for atomic force microscope (AFM) tips. We assembled a CNT using 2 three-axial manipulators in a scanning electron microscope (SEM) chamber. In this process, the length and angle of the CNT were adjusted by observing the SEM image, after which the CNT was glued by amorphouscarbon. The results of performance are as follows. The lifetime of the CNT tip proved to be 5 times better than that of the silicon tip when continuously measuring the micro-roughness of a Czochralski (Cz) P-type (100) silicon wafer. The CNT tip is able to trace a narrow space (width less than 1 microm) better than the conventional silicon tip because of its high aspect ratio. The relationship between the observed image and CNT geometry is discussed herein.  相似文献   

15.
Multi-walled carbon nanotube (CNT) tips were used in atomic force microscope (AFM) anodization lithography to investigate their advantages over conventional tips. The CNT tip required a larger threshold voltage than the mother silicon tip due to the Schottky barrier at the CNT-Si interface. Current-to-voltage curves distinguished the junction property between CNTs and mother tips. The CNT-platinum tip, which is more conductive than the CNT-silicon tip, showed promising results for AFM anodization lithography. Finally, the nanostructures with high aspect ratio were fabricated using a pulsed bias voltage technique as well as the CNT tip.  相似文献   

16.
Huang L  Su C 《Ultramicroscopy》2004,100(3-4):277-285
Changing the method of tip/sample interaction leads to contact, tapping and other dynamic imaging modes in atomic force microscopy (AFM) feedback controls. A common characteristic of these feedback controls is that the primary control signals are based on flexural deflection of the cantilever probes, statically or dynamically. We introduce a new AFM mode using the torsional resonance amplitude (or phase) to control the feedback loop and maintain the tip/surface relative position through lateral interaction. The torsional resonance mode (TRmode™) provides complementary information to tapping mode for surface imaging and studies. The nature of tip/surface interaction of the TRmode facilitates phase measurements to resolve the in-plane anisotropy of materials as well as measurements of dynamic friction at nanometer scale. TRmode can image surfaces interleaved with TappingMode™ with the same probe and in the same area. In this way we are able to probe samples dynamically in both vertical and lateral dimensions with high sensitivity to local mechanical and tribological properties. The benefit of TRmode has been proven in studies of water adsorption on HOPG surface steps. TR phase data yields approximately 20 times stronger contrast than tapping phase at step edges, revealing detailed structures that cannot be resolved in tapping mode imaging. The effect of sample rotation relative to the torsional oscillation axis of the cantilever on TR phase contrast has been observed. Tip wear studies of TRmode demonstrated that the interaction forces between tip and sample could be controlled for minimum tip damage by the feedback loop.  相似文献   

17.
Transient dynamics of tapping mode atomic force microscope (AFM) for critical dimension measurement are analyzed. A simplified nonlinear model of AFM is presented to describe the forced vibration of the micro cantilever-tip system with consideration of both contact and non-contact transient behavior for critical dimension measurement. The governing motion equations of the AFM cantilever system are derived from the developed model. Based on the established dynamic model, motion state of the AFM cantilever system is calculated utilizing the method of averaging with the form of slow flow equations. Further analytical solutions are obtained to reveal the effects of critical parameters on the system dynamic performance. In addition, features of dynamic response of tapping mode AFM in critical dimension measurement are studied, where the effects of equivalent contact stiffness, quality factor and resonance frequency of cantilever on the system dynamic behavior are investigated. Contact behavior between the tip and sample is also analyzed and the frequency drift in contact phase is further explored. Influence of the interaction between the tip and sample on the subsequent non-contact phase is studied with regard to different parameters. The dependence of the minimum amplitude of tip displacement and maximum phase difference on the equivalent contact stiffness, quality factor and resonance frequency are investigated. This study brings further insights into the dynamic characteristics of tapping mode AFM for critical dimension measurement, and thus provides guidelines for the high fidelity tapping mode AFM scanning.  相似文献   

18.
The application of STM to biological materiais has been limited by poor conductivity, sample geometry and stability of biological materials. In this paper we describe an STM study of the monomeric helical forms of collagen, a stable, conductive and widely prevalent structural protein. We have also used STM to image artificial Langmuir DPE (dipalmitoyl phosphatidyl ethanolamine) phospholipid membranes. Both molecular collagen and the phospholipid membranes were dried in air on highly oriented pyrolytic graphite (HOPG). Our STM images of collagen dried on HOPG reveal strands 15Å in diameter with a periodicity of about 30Å which correlates with that known to occur in collagen. Spikes which periodically protrude from strands in our STM images of collagen appear to represent pyrrolidine ring structures in the amino acids proline and hydroxyproline. Thus, we report the first STM imaging of native biomolecules revealing intramolecular details and what appear to be specific amino acids. STM imaging of phospholipid membranes show a lattice pattern with densities spaced ~4–5Å apart. These are thought to represent individual phospholipid molecules in an artificial membrane formed on the HOPG. We believe STM and its related technologies will have great future utility in biomolecular studies.  相似文献   

19.
Lee JH  Kang WS  Choi BS  Choi SW  Kim JH 《Ultramicroscopy》2008,108(10):1163-1167
Carbon nanotube (CNT)-tipped atomic force microscopy (AFM) probes have shown a significant potential for obtaining high-resolution imaging of nanostructure and biological materials. In this paper, we report a simple method to fabricate single-walled carbon nanotube (SWNT) nanoprobes for AFM using the Langmuir-Blodgett (LB) technique. Thiophenyl-modified SWNTs (SWNT-SHs) through amidation of SWNTs in chloroform allowed to be spread and form a stable Langmuir monolayer at the water/air interface. A simple two-step transfer process was used: (1) dipping conventional AFM probes into the Langmuir monolayer and (2) lifting the probes from the water surface. This results in the attachment of SWNTs onto the tips of AFM nanoprobes. We found that the SWNTs assembled on the nanoprobes were well-oriented and robust enough to maintain their shape and direction even after successive scans. AFM measurements of a nano-porous alumina substrate and deoxyribonucleic acid using SWNT-modified nanoprobes revealed that the curvature diameter of the nanoprobes was less than 3nm and a fine resolution was obtained than that from conventional AFM probes. We also demonstrate that the LB method is a scalable process capable of simultaneously fabricating a large number of SWNT-modified nanoprobes.  相似文献   

20.
提出利用电子束诱导铂沉积和聚焦离子束铣削技术,实现碳纳米管原子力显微镜探针针尖的制备和结构优化研究。结合高分辨率扫描电子显微镜观测和纳米操纵仪,利用电子束诱导铂沉积实现碳纳米管固定到普通原子力显微镜探针末端,可实现直径小于10nm的纳米管探针制备。提出基于聚焦离子束铣削和照射技术实现对纳米管针尖的长度、角度的精确调控优化,纳米管探针的角度调控精度优于1°。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号