共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
依靠人工观测锑浮选泡沫特征进行锑浮选工况识别,主观性强、误差大,严重制约浮选性能。基于计算机视觉的识别方法成本低、效果好。针对以上问题,提出一种基于轻量型卷积视觉Transformer(L-CVT)的锑浮选工况识别方法。通过Transformer层的堆叠代替标准卷积中矩阵乘法来学习全局信息,将卷积中的局部建模更替为全局建模,同时引入轻量型神经网络MobileNetv2中的子模块,减少计算成本。所提方法解决了卷积神经网络(CNN)忽略浮选图像内部长距离依赖关系的问题,同时也弥补了视觉Transformer(VIT)缺乏归纳偏置的缺点。实验结果表明,基于所提方法的锑浮选工况识别准确率最高可达93.56%,明显高于VGG16、ResNet18、AlexNet等主流网络,为锑浮选数据在工况识别领域提供了重要参考。 相似文献
6.
7.
提出了一种基于深度频谱卷积神经网络的视觉目标跟踪算法。该算法在深度模型训练阶段采用谱池化替代深度卷积神经网络中的最大池化过程,用贝叶斯分类器替代softmax损失层计算最大分类值,并将其整合到深度神经网络跟踪框架中,通过新网络计算输入正负样本的概率分布预测目标位置。该算法充分利用谱池化在频域下降维到任意维度且计算高效的优点,克服了最大池化采样造成大量空间信息丢失的不足,提升了计算速度。在权威多场景视频标准测试库上对所提算法进行验证,结果验证了该算法兼顾了效率和跟踪精度,有效提高跟踪器的性能,在相同测试条件下,文中算法性能优于同类对比算法。 相似文献
8.
研究一种基于卷积神经网络的图像分类算法,该方法是以5个卷积层和3个全连接层构成模型,第1、2、5个卷积层连接有最大池化层,输出层采用softmax激活函数。为了提升模型的性能,在隐藏层采用了ReLU激活函数,同时引入了重叠池化方法。为抑制模型产生过拟合,采用了数据增强策略。实验结果表明,该模型的图像分类精度明显优于传统机器学习方法。 相似文献
9.
针对如何提高纸币识别率的问题,该文提出一种改进深度卷积神经网络(DCNN)的纸币识别算法。该算法首先通过融合迁移学习、带泄露整流(Leaky ReLU)函数、批量归一化(BN)和多层次残差单元构造深度卷积层,对输入的不同尺寸纸币进行稳定而快速的特征提取与学习;然后采用改进的多层次空间金字塔池化算法对提取的纸币特征实现固定大小的输出表示;最后通过网络全连接层和softmax层实现纸币图像分类。实验结果表明,该算法在分类性能、泛化能力与稳定性上明显优于常用的纸币分类算法;同时该算法也能够满足纸币清分系统的实时性要求。 相似文献
10.
一种基于卷积神经网络的性别识别方法 总被引:1,自引:0,他引:1
采用人工智能进行性别识别时,人脸图像在获取的时候容易受到光照、遮挡等影响,这些因素给人脸性别识别带来了困难。采用卷积神经网络用于性别识别,并通过扩展网络结构,进一步增强卷积神经网络的分类能力。并且对识别效果进行置信度分析,通过设置卷积神经网络的拒识区域来解决拒绝区间的问题。在实际测试中,通过拒绝7.46%的测试样本,达到98.67%的正确识别率。 相似文献
11.
12.
卷积神经网络通过卷积和池化操作提取图像在各个层次上的特征进而对目标进行有效识别,是深度学习网络中应用最广泛的一种。文中围绕一维距离像雷达导引头自动目标识别,开展基于卷积神经网络的目标高分辨距离像分类识别方法研究。首先,基于空中目标一维距离像姿态敏感性仿真生成近似平行交会条件下不同类型目标的高分辨距离像数据集;其次,构建一种一维卷积神经网络结构对目标高分辨距离像进行分类识别;作为比较,针对同类高分辨距离像数据集,分析了主成分分析-支持向量机方法的目标分类识别效果。结果表明:基于卷积神经网络的目标分类识别算法有更好的识别能力,对高分辨距离像的姿态敏感性具有较强的适应性。 相似文献
13.
针对目标跟踪中的遮挡、旋转、快速运动、形变等问题,本文提出基于卷积神经网络的响应自适应跟踪算法。首先,通过卷积神经网络提取目标的多层卷积特征,利用粒子滤波算法获取目标的多模板响应图,自适应学习目标的期望响应;然后通过构造目标函数的对偶形式解决多模板联合优化问题,计算多模板情况下每层卷积特征的最优滤波参数;最后通过相关滤波算法计算多层滤波响应,通过响应加权融合的方式计算最终响应图,以此估计目标位置。本文利用OTB-2013数据集中的方法测试我们提出的算法,实验表明该算法的整体成功率和精确度为0.884和0.915。本文算法在距离准确度、成功率和平均跟踪误差方面均优于传统的相关滤波跟踪算法,有一定研究价值。 相似文献
14.
15.
简述了利用深层卷积神经网络进行自动调制识别(Automatic Modulation Recognition,AMR)的进展,并结合其模型在基准数据集上的实验表明,大多数不依赖于先验知识的特征提取模型容易忽略模型参数量大、计算复杂度高的问题,因此将工作重点集中在保持高精确度的同时轻量化模型。利用多信道深度学习模型,从时间和空间的角度有效提取特征,搭建以卷积神经网络(Convolution Neural Networks,CNN)和门控循环单元(Gating Recurrent Unit,GRU)为特征提取层的深层学习框架,可以在现有高识别度模型的识别效果上有略微提升,具有高效的收敛速度,且减少了40%以上的参数体积,在训练时间和测试时间上更有优势。该方法在RadioML2016.10a数据集0 dB以上信噪比条件下的识别精度保持在90%以上。 相似文献
16.
为提高调制分类识别精确度,降低计算复杂度,提出了一种基于卷积神经网络(CNN)与红绿蓝(RGB)循环谱二维图的智能调制识别方法。基于循环谱特征可识别调制类型的机理,为了降低计算复杂度,将三维的循环谱转换为二维平面的RGB循环谱图,并将其用于构建数据集;将一种计算复杂度较低的CNN作为调制类型分类识别器。仿真结果表明,所提出的智能调制识别方法能够以较低的计算复杂度,获得更高的分类精确度。 相似文献
17.
18.
实弹射击是部队的基础军事训练项目。现有报靶系统中基于计算机视觉的弹孔识别定位系统由于具有快速、精确、安全、人员成本低等优点而被广泛应用到该项目中。然而,计算机视觉系统处理的图像通常受镜头加工工艺以及相机轴向与被测对象所在平面不垂直的影响,导致被测对象的图像产生畸变,最终会给弹孔坐标位置的精准定位带来误差。为了提高基于计算机视觉的自动报靶系统的报靶精度,提出一种基于卷积神经网络的畸变校正算法,只需一张胸环靶面的模板图像即可模拟出大量训练数据集。训练完成后,输入一张畸变图片就可以得到该图片的畸变参数,并利用该参数完成对图像的畸变校正。与传统校正算法的对比结果表明,该算法校正效果较好,有利于提升基于计算机视觉的自动报靶系统的报靶精度。 相似文献
19.
手势识别是人机交互,智能语义识别和远程人机 交流领域的热门研究课题。目前基于 视觉的手势识别问题仍是研究的难点,在多变背景下的手势姿态识别仍然存在较大问题。近 年来,随着深度神经网络技术的快速发展,利用网络自主学习的方法来提取手势姿态有关特 征得到了广泛关注。由于卷积神经网络具有较强的学习能力和个体特征的表达能力,本文针 对传统手势识别算法精度低,鲁棒性差的问题,提出了基于卷积神经网络的TensorFlow框架 下加入扁平卷积模块的FD-CNN网络手势识别算法。在预处理数据集后,基于FD-CNN网络的 手 势识别方法可以直接将预处理后的图像输入网络进行训练,最终输出测试结果的识别精度为 99.0%。与传统方法和经典卷积神经网络方法相比,本文方法提高了 网 络系统对样本数据的多样性和复杂性的有效识别,具有较高的识别率和较好的鲁棒性效果。 相似文献
20.