首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biochar is widely recognized as an effective material for sequestration of carbon dioxide. The possibility of using it as a coating material on polypropylene fibers to improve mechanical properties and permeability mortar is explored in this study. Effectiveness of two types of biochar – fresh biochar and biochar saturated with carbon dioxide prior to application as coating – on compressive and flexural strength, post-cracking behavior and permeability of mortar is studied. The biochar used was derived from mixed wood saw dust by pyrolysis at 300 °C. Experimental results show that application of fresh biochar coating offer significant improvement in compressive strength and flexural strength of mortar. Residual strength and post-cracking ductility of mortar with biochar coated fibers is found to be higher than control samples, although fresh biochar coating offers the best performance. Mortar with polypropylene fibers coated with fresh biochar shows higher impermeability, compared to reference samples and mortar with saturated biochar coated fibers. The findings suggest that biochar coating could be a potential solution to improve properties of fiber reinforced cementitious composites that also promotes waste recycling and carbon sequestration.  相似文献   

2.
The sustainable development of cement manufacturing requires extension of the raw material base, including large-tonnage waste. Hydrated mortar waste is a promising mineral resource for the production of Portland cements and alternative binders, such as alkali-activated slag cement. The influences of ground-hydrated mortar aged for 3 months on the properties of alkali-activated slag fresh and hardened pastes were performed. The results show that the properties are dependent on the concentration (2.5–60%), cement:sand ratio (1:1–3) and fineness (200–600 m2/kg) of the ground hydrated mortar; the alkali activator (sodium carbonate and sodium silicate); and the curing conditions (normal conditions and steam curing). The fresh paste properties that we considered in this study included the water requirement and the setting time; the hardened paste properties we considered were the water absorption, the density, and the compressive strength after 2, 7, 14, 28, 180 and 360 days of ageing. The ground hydrated mortar improved the early strength and the long-term strength of the alkali-activated slag paste and replaced the slag up to 50%. The factors that affecting the strength of the alkali-activated slag cement with ground hydrated mortar as an additive were, in order of influence, alkali activator type > curing conditions > cement:sand ratio > ground-hydrated mortar fineness.  相似文献   

3.
Chitin was used to prepare an alternative, eco–friendly and low–cost adsorbent by a simple pyrolysis process. The adsorbent, named chitin derived biochar, was characterized and applied to treat colored effluents containing methyl violet dye (MV). Pyrolysis using N2 flow rate of 0.25 L min?1, heating rate of 10 °C min?1 until 800 °C was suitable to prepare a chitin derived biochar with good characteristics. Chitin derived biochar presented surface area of 275.0 m2 g?1. The MV adsorption on the chitin derived biochar was favored in alkaline conditions and ambient temperature. The adsorption process presented fast kinetics and, the maximum adsorption capacity was higher than 1000 mg g?1. Chitin derived biochar can be used for 7 consecutive adsorption/desorption cycles maintaining the same adsorption capacity. Also, the material was suitable to treat colored effluents, reaching color removal percentage of 95%. In brief, it was demonstrated that chitin derived biochar is a low–cost and efficient material to treat colored effluents.  相似文献   

4.
研究了废水泥浆澄清液、浆体以及干燥后的粉体对水泥胶砂流动度以及抗压强度的影响,为废水泥浆在预拌混凝土生产中的的回收利用提供技术基础,解决废水泥浆的环境污染和资源化利用问题。  相似文献   

5.
Electrically conductive carbon powders are commonly used as filler materials in polymers to create electrically semi-conductive composite materials for use in battery electrodes and anti-static applications. Current methods for characterizing the conductivity of these powders use two pistons to compress the powders. Two-piston methods are known to underestimate conductivity. This study develops a guard-electrode method based on ASTM D257 to better characterize the bulk conductivity and impedance spectra of electrically conductive powders. The conductivity and impedance spectra of a highly conductive powder (copper powder) and a low conductivity powder (cellulose) were used to bound the conductivity of carbon black, graphite, and biochar. Powders were measured through a full range of compression with both the two-piston and the guard-electrode method. In all cases, measurements using the guard-electrode method have higher conductivity and lower impedance than the same powders measured using the two-piston method. The grain conductivity of the particles is obtained through fitting the relationship of conductivity versus packing fraction using the GEM equation. The guard-electrode method is shown to be more similar to established conductivity values as measured via a four-probe technique for copper and graphite then the two-piston method.  相似文献   

6.
7.
《Advanced Powder Technology》2020,31(3):1253-1263
This study aimed to prepare a corn straw-derived biochar supported nZVI magnetic composite (nZVI/BC) and evaluate its efficiency in adsorption of malachite green dye (MG). The prepared nZVI/BC composite was characterized by XRD, FTIR, TEM, TEM-EDS, VSM, XPS, TGA, zeta potential and BET surface area. The prepared mesoporous composite showed enhanced efficiency for the adsorption of MG dye. Adsorption models and kinetic results indicated that the adsorption of MG onto nZVI/BC composite was more fitted to Langmuir isotherm and follows second order kinetics. Intraparticle diffusion model indicated that the adsorption follows a three steps mechanism. The maximum adsorption capacity of nZVI/BC composite (515.77 mg MG/g composite) was much higher than most of reported biochar adsorbents. The removal process of MG onto nZVI/BC composite does not only proceed via adsorption mechanism, but also through an oxidative degradation mechanism. The Magnetic character of the biochar enables its easy separation and reuse for many cycles.  相似文献   

8.
This study examined the feasibility of reusing spent zeolite catalyst, after fluidized catalytic cracking, as a substitute for fine aggregate (sand) in cement mortars. The tested result shows that spent catalyst can replace up to 10% of fine aggregate without decreasing the mortar strength. In fact, the substituted mortars show higher compressive strength than the unsubstituted samples. The flowability of the fresh mortars decreases with increasing substitution level and the mortars incorporated with spent catalyst show less bleeding. In the hardened state, the water absorption of the resulting mortar increases with longer curing age, higher substitution level and smaller water-to-cement (W/C) ratio. Toxicity characteristic leaching procedure (TCLP) analysis confirms that the spent catalyst meets the standard, and thus should be classified as general non-hazardous industrial waste.  相似文献   

9.
Concrete made from limestone cement may exhibit a lack of durability due to the formation of thaumasite. The addition of minerals that improve the concrete durability is expected to slow down the formation of thaumasite. In this work the effect of natural pozzolana, fly ash, ground granulated blastfurnace slag (ggbs) and metakaolin on the thaumasite formation in limestone cement mortar is examined. A limestone cement containing 15% w/w limestone was used. Mortar specimens were prepared by replacing a varying part of the limestone cement with the above minerals. Siliceous and calcareous sand was used in order to study the effect of the sand type on the thaumasite formation. The specimens were immersed in a 1.8% MgSO4 solution and cured at 5 and 25 °C. The formation of thaumasite was checked and confirmed by visual inspection, strength tests, ultrasonic pulse velocity measurements, XRD and TGA. It is concluded that the use of specific minerals, as partial replacement of cement, inhibits the thaumasite formation in limestone cement mortar.  相似文献   

10.
The removal of the methylene blue (MB), a cationic azo dye, in water is highly demanded due to its harmful effects on human health. In this study, the nitrogen-doped carbon nano-sheet was prepared as the adsorbent for MB using the efficient one-pot pyrolysis of melamine in the presence of NH4Cl and PVP. During the heat-treatment, the PVP interacted with melamine forming hydrogen-bond, which would not only elevate the melamine deamination process but also prohibit the melamine polymerization, which led to the formation of the layered structure. The addition of NH4Cl in the pyrolysis mixture would favor the formation of crumpled graphene-like-structure. The prepared materials showed a very high adsorption capacity of MB (348.2 mg/g), which is much higher than many other materials. Such a high adsorption capacity was likely due to its unique graphene-like structure, high N doping with a high content of pyridinic N and graphitic N, and large specific surface area. Moreover, the material was successfully recycled with only a slight decrease in the removal efficiency after 5 cycles.  相似文献   

11.
The use of carbon fiber wastes (FC) as a component to manufacture lightweight aggregates (LWAs) for concrete has been studied. Amounts of 0, 2.5, 5 and 10% (w/w) of powdered FC were added into a mineral matrix composed by 90% of granite-marble sludge (COR) plus 10% of sepiolite rejection (SEP). The mixtures were milled, kneaded with water, extruded, shaped into pellets, oven-dried and finally fired at 1100, 1125 and 1150 °C for 4, 8 and 16 min in a rotary kiln. The main technological properties of the sintered aggregates were measured. The addition of FC promoted bloating and the formation of an internal structure in which both pores and unburnt carbon fibers were present. Improvements in lightness and mechanical properties were also observed. This is the first time that carbon fibers have been embedded within aggregates, opening the way to the development of a new type of LWAs for concrete.  相似文献   

12.
纳米炭黑水泥砂浆的导电性与电热特性研究   总被引:4,自引:1,他引:4  
王小英  孙明清  侯作富  龙曦  李卓球 《功能材料》2006,37(11):1841-1843,1847
研究了纳米炭黑水泥砂浆的导电性和电热特性.研究表明,当炭黑掺量<2.5%时,随着炭黑掺量的增加,电阻率下降明显;炭黑掺量为2.5%时,炭黑水泥砂浆电阻率可达到102Ω·cm;而炭黑掺量>2.5%时,电阻率下降趋缓.在炭黑掺量为5%左右电阻率基本不变,电阻率在30~40Ω·cm之间.与石墨粉相比,纳米炭黑做导电相只需较小掺量,就可制备满足电热功能应用的导电混凝土.当炭黑掺量>1%时,龄期对电阻率影响小,其电阻比较稳定.炭黑水泥砂浆板电功率稳定、电热功能重复性好.  相似文献   

13.
Lunhong Ai  J. Jiang 《Materials Letters》2010,64(12):1354-1356
Homogeneous carbon submicrospheres with average diameters of about 700 nm were synthesized by a facile hydrothermal route without utilization of any catalyst or template, using glucose as carbon source. SEM observation indicated that the product consisted of abundant submicrospheres with smooth surfaces. As an example of potential applications, carbon submicrospheres were used as adsorbent in wastewater treatment. The results indicated that carbon submicrospheres could be used as a novel, effective and low-cost adsorbent materials for dye removal.  相似文献   

14.
Jinbo Wu  Zhenghe Xu 《Thin solid films》2010,518(12):3240-3245
The electrochemical properties of ferrocene (Fc) on a glassy carbon (GC) electrode modified by multi-walled carbon nanotubes (MWNTs) in the presence and absence of surfactants have been investigated by progressively voltammetric sweeping. Dihexadecyl phosphate (DHP) and hexadecyl trismethyl ammonium chloride (HTAC) are found to impact the redox reactions of Fc adsorbed on MWNT surfaces. An excess amount of DHP dispatches Fc from MWNTs surfaces, leading to weakly adsorbed configuration of Fc. The formal potential of the adsorbed Fc in the presence of DHP shifts to a lower potential. Cationic surfactant HTAC on MWNT surfaces depresses the redox reactions corresponding to the weakly adsorbed configuration of Fc. It becomes evident that the configuration and hence redox reactions of Fc depend strongly on the presence and concentrations of surfactants on the electrode surfaces and in the buffer solutions.  相似文献   

15.
The present work deals with removal of hexavalent chromium from synthetic effluents in a batch stirred electrocoagulation cell with iron-aluminium electrode pair coupled with adsorption using granular activated carbon (GAC). Several working parameters such as pH, current density, adsorbent concentration and operating time were studied in an attempt to achieve higher removal capacity. Results obtained with synthetic wastewater revealed that most effective removal capacities of chromium (VI) could be achieved when the initial pH was near 8. The removal of chromium (VI) during electrocoagulation, is due to the combined effect of chemical precipitation, coprecipitation, sweep coagulation and adsorption. In addition, increasing current density in a range of 6.7-26.7mA/cm2 and operating time from 20 to 100min enhanced the treatment rate to reduce metal ion concentration below admissible legal levels. The addition of GAC as adsorbent resulted in remarkable increase in the removal rate of chromium at lower current densities and operating time, than the conventional electrocoagulation process. The method was found to be highly efficient and relatively fast compared to existing conventional techniques.  相似文献   

16.
采用煤基炭棒阳极,在氦气/乙炔气氛下直流电弧放电制备了直径0.4μm~0.6μm、长度数十微米的炭纤维。以该微米炭纤维(MCFs)为吸附剂,研究水中镉离子在其上的吸附性能。考察了MCFs的表面性质、时间、溶液pH值及镉离子初始浓度对吸附的影响。实验表明,浓硝酸氧化处理可明显增加MCFs表面含氧官能团数量,吸附能力显著增加;吸附动力学数据符合准二级速率方程。pH值对吸附影响较大。酸性条件下,吸附等温线可用Langmuir方程和Freundlich方程拟合;沉淀发生条件下,可用表面沉淀模型拟合。MCFs的单位质量和单位比表面积的吸附量都很大,当pH=5.50和平衡浓度为2 mg.L-1时其吸附量分别为5.7 mg.g-1和0.058 mg.m-2。结果表明,MCFs在环境保护中显示出潜在应用前景。  相似文献   

17.
In this experimental study, the usability of waste marble dust (WMD) as an additive material in blended cement has been investigated. For this purpose, waste marble dust added cements (WMDCs) have been obtained by intergrinding WMD with Portland cement clinker at different blend ratios: 2.5%, 5.0%, 7.5% and 10% by weight. 40 × 40 × 160 mm mortar prisms have been produced with the obtained cements. Strength tests have been carried out on mortar specimen at 7, 28, and 90 days. WMDCs have been compared to each other as well as to control cements of CEM I and CEM II with respect to their physical, chemical and mechanical properties. Obtained results showed that WMDCs conform to EN 197-1 standard and thus 10% WMD can be used as an additive material in cement manufacturing.  相似文献   

18.
The Calera method for carbon sequestration promotes carbon mineralization through aqueous precipitation. This work reports a comprehensive analysis on a carbonate obtained by the Calera process to evaluate its suitability as a cement replacement for concrete applications. This work focuses on the analysis of two hydrated cement pastes made with a blend of Portland cement and Calera carbonates by various advanced analytical techniques. Scanning Electron Microscopy (SEM) equipped with Energy Dispersive Spectroscopy (EDS) was used to observe microstructures and determine elemental compositions. The synchrotron X-ray diffraction technique combined with Rietveld analysis were applied to identify constituent phases and refine crystal structures, crystallite sizes as well as relative phase abundances. Calcite and vaterite are observed in all samples while CSH II and portlandite are dominant in the cement pastes. Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectrometry and Scanning Transmission X-ray Microscopy (STXM) experiments were conducted to investigate chemical speciation and morphological information of carbonate minerals with different absorption energies. STXM results confirmed heterogeneity of the samples, and also provided a nano-scale phase map across multiple particles. Differential Thermogravimetric (DTG) was used to observe heat transfer through structures and changes in mass upon heating. A compressive strength tests were performed on materials and shown comparable strength to Portland cement.  相似文献   

19.
Oxygen functionalized carbon nanocompositse (O-I@C) based on glucose and illite were obtained through mild hydrothermal process and surface oxidation. The surface properties of the prepared O-I@C were analyzed by Boehm titration, scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and Specific surface area (BET). The results showed that the surfaces of the prepared O-I@C nanocomposites were functionalized with abundant oxygen-containing functional groups (OFGs). The functionalized O-I@C nanocomposites were proven to be effective adsorbents for fast removal of congo red (CR) and methylene blue (MB) from aqueous solution within 10 min. It is demonstrated that the initial pH of dyes solution has an important influence on the adsorption process of both CR and MB, indicating that the OFGs created on the surfaces of the materials are responsible for the promoted adsorption ability. Furthermore, it is also proved that the adsorption isotherms of CR and MB obey the Langmuir model, with the maximum adsorption capacities of 238.40 mg/g and 215.28 mg/g, respectively. In addition, the used materials could be regenerated by washing with NaOH solution and reused at least four times, which exhibits potential applications as efficient and easily reusable adsorbents for the rapid removal of anionic dye CR and cationic dye MB from wastewater.  相似文献   

20.
添加多壁纳米碳管活性炭电极材料的电化学电容特性   总被引:7,自引:7,他引:7  
在活性炭电极材料中,用多壁纳米碳管作导电添加剂替代传统的炭黑、石墨粉等可较大地改善电极材料的性能。当添加质量分数为5%的多壁纳米碳管时,活性炭电化学电容器的比电容量由添加同量炭黑的130F/g增加到185F/g,同时提高了活性炭电容器的频率响应性能。基于该研究结果试制出不同规格的添加多壁纳米碳管的活性炭电化学电容器样品,结果表明添加多壁纳米碳管的活性炭电极材料具有良好的电化学电容特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号