首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanical properties of recycled aggregate concrete (RAC) incorporating carbonated recycled concrete aggregates (RCAs) have previously been reported. However, the durability of RAC prepared with carbonated RCAs remains to be accessed. In this study, the durability properties of RAC prepared with non-carbonated RCAs and carbonated RCAs, in terms of deformation (drying shrinkage), water absorption and permeability (bulk electrical conductivity, gas and chloride ion permeability), are presented. The experimental results indicated that: (i) the incorporation of the carbonated RCAs in RAC not only helped to reduce the water absorption of RAC, but also reduced its permeability; (ii) when 100% carbonated NRCAs was used, the improvement extent of impermeability was 15.1%, 36.4% and 42.4% for bulk electrical conductivity, chloride ion permeability and gas permeability, respectively. Comparing the results of the mechanical and durability properties, the CO2 curing treatment of RCAs had a greater beneficial impact on the durability properties of the RAC; and (iii) there was a good correlation between the water absorption of RAC and its permeability indicators. The water absorption value of RAC may be used as a criterion of the durability of RAC.  相似文献   

2.
This paper presents the fresh, mechanical, and durability performance, of a structural concrete mix classified as C-1, by the Canadian Standards Association (CSA) made with controlled quality Recycled Concrete Aggregate (RCA). Five mixes with water-to-cementing material (w/cm) ratio of 0.40 were produced with various RCA contents and tested against two 0% RCA control mixes made with General Use (GU) cement, and General Use Limestone cement (GUL). The RCA contents in the mixes were 10%, 20%, and 30% by coarse aggregate volume replacement, as well as 10% and 20% fine and coarse (granular) aggregate volume replacement. All evaluated mixes met the specifications from the CSA for fresh, mechanical, and durability properties. The coarse RCA mixes performed better than the granular RCA mixes in terms of flexural and splitting tensile strengths, linear drying shrinkage, water sorptivity, and rapid chloride-ion permeability, where the test results were significantly affected by the ultra fines present in the granular RCA.  相似文献   

3.
In this study, the fresh and hardened properties of self-compacting concrete (SCC) using recycled concrete aggregate as both coarse and fine aggregates were evaluated. Three series of SCC mixtures were prepared with 100% coarse recycled aggregates, and different levels of fine recycled aggregates were used to replace river sand. The cement content was kept constant for all concrete mixtures. The SCC mixtures were prepared with 0, 25, 50, 75 and 100% fine recycled aggregates, the corresponding water-to-binder ratios (W/B) were 0.53 and 0.44 for the SCC mixtures in Series I and II, respectively. The SCC mixtures in Series III were prepared with 100% recycled concrete aggregates (both coarse and fine) but three different W/B ratios of 0.44, 0.40 and 0.35 were used. Different tests covering fresh, hardened and durability properties of these SCC mixtures were executed. The results indicate that the properties of the SCCs made from river sand and crushed fine recycled aggregates showed only slight differences. The feasibility of utilizing fine and coarse recycled aggregates with rejected fly ash and Class F fly ash for self-compacting concrete has been demonstrated.  相似文献   

4.
Recycled demolished concrete (DC) as recycled aggregate (RA) and recycled aggregate concrete (RAC) is generally suitable for most construction applications. Low-grade applications, including sub-base and roadwork, have been implemented in many countries; however, higher-grade activities are rarely considered. This paper examines relationships among DC characteristics, properties of their RA and strength of their RAC using regression analysis. Ten samples collected from demolition sites are examined. The results show strong correlation among the DC samples, properties of RA and RAC. It should be highlighted that inferior quality of DC will lower the quality of RA and thus their RAC. Prediction of RAC strength is also formulated from the DC characteristics and the RA properties. From that, the RAC performance from DC and RA can be estimated. In addition, RAC design requirements can also be developed at the initial stage of concrete demolition. Recommendations are also given to improve the future concreting practice.  相似文献   

5.
An accelerated carbonation technique was employed to strengthen the quality of recycled concrete aggregates (RCAs) in this study. The properties of the carbonated RCAs and their influence on the mechanical properties of new concrete were then evaluated. Two types of RCAs, an old type of RCAs sourced from demolished old buildings and a new type of RCAs derived from a designed concrete mixture, were used. The chosen RCAs were firstly carbonated for 24 h in a carbonation chamber with a 100% CO2 concentration at a pressure level of 0.1 Bar and 5.0 Bar, respectively. The experimental results showed that the properties of RCAs were improved after the carbonation treatment. This resulted in performance enhancement of the new concrete prepared with the carbonated RCAs, especially an obvious increase of the mechanical strengths for the concrete prepared with the 100% carbonated new RCAs. Moreover, the replacement percentage of natural aggregates by the carbonated RCAs can be increased to 60% with an insignificant reduction in the mechanical properties of the new concrete.  相似文献   

6.
This paper describes pullout test results on deformed reinforcing bars in natural and recycled fine aggregate (RFA) concrete. The effects of bar location and RFA grade on bond strength between reinforcing bar and recycled aggregate concrete (RAC) were evaluated through the experimental program. A total of 150 pullout specimens were fabricated for the experiment. Two reinforcing bar orientations were considered with respect to the casting direction; vertical bars and horizontal bars, the latter of which was prepared to evaluate top-bar effect. Considered variables included four RFA replacement ratios (RFArs), two water-absorption grades (RFA-A: 5.83%, RFA-B: 7.95%) of RFA and three reinforcing bar locations (75, 225 and 375 mm height from the bottom of the casting mold). In addition, to evaluate the thermal and aging effect on bond behavior between the reinforcing bar and RFA concrete, some parts of pullout specimens had exposed to rapid freeze–thaw environment or been cured at air during 28 or 730 days. Test results demonstrated that bond strength does not seem to be affected by the RFAr for higher RFA grades (RFA-A), at least up to 60% RFAr. In contrast, the RAC including lower RFA grade (RFA-B) showed clear decreases in bond strength with increasing RFAr, similar to the trend observed for compressive strength. For horizontal pullout specimens, RFA concrete specimens showed higher bond strength gap between top and bottom bars than natural aggregate concrete (NAC) specimens. Bond strengths of the horizontally cast pullout specimens were affected by the flowability of concrete rather than the RFAr or RFA grade. No noticeable degradation occurred during freeze–thaw cycling of the RAC specimens, indicating that the RFA used in this study is appropriate for use in freeze–thaw environments.  相似文献   

7.
This paper analyzes the possibility of applying the Compressible Packing Model (CPM) for the proportion of concrete mixtures produced with Recycled Concrete Aggregates (RCAs). As a matter of fact, the RCAs are composed of natural aggregates and attached mortar and, as a consequence, they generally present a higher porosity in comparison with ordinary natural aggregates. The higher porosity of RCAs can affect the resulting Recycled Aggregate Concretes (RACs) properties and, for this reason, the mix design procedure available in literature for ordinary concrete mixture cannot be applied as such in the case of RACs. In this context, the present work first presents a preliminary study in which the optimal mixing procedure for RACs is investigated and then, a possible extension of the CPM in the case of RACs is analyzed. Several structural RAC mixtures were designed for three strength classes (25, 45 and 65 MPa) by considering the variation of the aggregate replacement from 0 to 100%. Finally, the proposed procedure is experimentally validated by performing mechanical and durability tests on selected mixtures for the three strength classes with a RCAs content up to 60%. The results reported herein demonstrate the applicability of the CPM for recycled concrete mixtures and highlight as the rational use of RCAs lead to produce structural RAC without affecting its mechanical and the durability performance.  相似文献   

8.
This study proposes a comprehensive analysis on the structural performance of reinforced Recycled Aggregate Concrete members. Particularly, it summarizes the results of an experimental investigation aimed at analyzing the tension stiffening behavior of normal and high strength class concretes produced with Recycled Concrete Aggregates (RCAs). The mixtures were proportioned in order to achieve 25 and 65 MPa of compressive strength and, moreover, several recycled-to-natural coarse aggregates replacement ratios were considered: 0%, 25% and 50%. The results derived from this type of test furnish a comprehensive analysis on both the steel-to-matrix interaction and the crack formation and propagation on concrete elements as well as distributed cracking mechanisms. Using a finite difference numerical model, the experimental results are used to back-calculate and identify the steel-to-concrete bond slip law. Also, it is an alternative mean of developing the stress-crack-width law for concrete in tension. The results showed that the use of recycled concrete aggregate does not affect the resulting concrete performance and, therefore, the RCAs can be successfully employed, up to the levels analyzed herein, for the production of structural elements made with normal and high strength class concrete mix.  相似文献   

9.
The effects of the use of Class F fly ash as a cement addition on the hardened properties of recycled aggregate concrete were determined. In this study, four series of concrete mixtures were prepared with water-to-cement (w/c) ratios of 0.55, 0.50, 0.45 and 0.40. The recycled aggregate was used as 0%, 20%, 50% and 100% replacements of coarse natural aggregate. Furthermore, fly ash was employed as 0% and 25% addition of cement. Although the use of recycled aggregate had a negative effect on the mechanical properties of concrete, it was found that the addition of fly ash was able to mitigate this detrimental effect. Also, the addition of fly ash reduced the drying shrinkage and enhanced the resistance to chloride ion penetration of concrete prepared with recycled aggregate. Moreover, it was found that the drying shrinkage and chloride ion penetration decreased as the compressive strength increased. Compared with the results of our previous study, the present study has quantified the advantages of using fly ash as an additional cementitious material in recycled aggregate concrete over the use of fly use as a replacement of cement.  相似文献   

10.
This paper reviews the effect of incorporating recycled aggregates, sourced from construction and demolition waste, on the carbonation behaviour of concrete. It identifies various influencing aspects related to the use of recycled aggregates, such as replacement level, size and origin, as well as the influence of curing conditions, use of chemical admixtures and additions, on carbonation over a long period of time. A statistical analysis on the effect of introducing increasing amounts of recycled aggregates on the carbonation depth and coefficient of accelerated carbonation is presented. This paper also presents the use of existing methodologies to estimate the required accelerated carbonation resistance of a reinforced recycled aggregate concrete exposed to natural carbonation conditions with the use of accelerated carbonation tests. Results show clear increasing carbonation depths with increasing replacement levels when recycled aggregate concrete mixes are made with a similar mix design to that of the control natural aggregate concrete. The relationship between the compressive strength and coefficients of accelerated carbonation is similar between the control concrete and the recycled aggregate concrete mixes.  相似文献   

11.
The recycling of construction and demolition (C&;D) waste as a source of aggregates for the production of new concrete has attracted increasing interests from the construction industry. While the environmental benefits of using recycled aggregates are well accepted, some unsolved problems prevent this type of material from wide application in structural concrete. One of the major problems with the use of recycled aggregates in structural concrete is their high water absorption capacity which leads to difficulties in controlling the properties of fresh concrete and consequently influences the strength and durability of hardened concrete. This paper presents an experimental study on the properties of fresh concrete prepared with recycled aggregates. Concrete mixes with a target compressive strength of 35 MPa are prepared with the use of recycled aggregates at the levels from 0 to 100% of the total coarse aggregate. The influence of recycled aggregate on the slump and bleeding are investigated. The effect of delaying the starting time of bleeding tests and the effect of using fly ash on the bleeding of concrete are explored.  相似文献   

12.
Abstract

To evaluate the feasibility of using Recycled Concrete Aggregates (RCA) in asphalt mixtures, the coarse RCA and fine RCA were prepared as a partial replacement of the natural aggregates (NA). Different amounts of replacement of NA with RCA were investigated, and the mechanical properties and pavement performance of asphalt mixtures containing different proportions of RCA were analysed based on laboratory tests. The results indicated that with increasing the RCA percentage, the optimum asphalt content increased and the bulk density of mixtures decreased as well. Mixtures containing 40% coarse RCA or 20% fine RCA both showed satisfactory performance. Besides, the mixture containing 40% fine RCA had the highest asphalt content, but gave much better performance compared to the virgin mix except for its bad resistance to permanent deformation. Finally, the pavement performance of mixtures containing 60% coarse RCA and 50% coarse RCA were unacceptable.  相似文献   

13.
The prediction of carbonation depth for recycled aggregate concrete (RAC) is investigated in this paper. The existing prediction models were evaluated, and it showed that the coefficient of variation (COV) of model error for the existing models is high. By introducing the weighed water absorption of aggregates, the COV of model error can be effectively decreased. Compared with the existing models, the proposed model can predict more accurate carbonation depths. For RAC specimens, compared with the fib model and Xiao and Lei's model-a, the COV of model error of the proposed model is 0.36 which is decreased by 33.3%, and when compared with Xiao and Lei's model-b and Silva et al.’s model, the corresponding decreases are 55.2% and 16.2%. Finally, the proposed model is validated by a 10-year-old carbonation experiment, which indicates that the proposed model is reasonable and can be applied to predict the carbonation depth of RAC.  相似文献   

14.
Recycled aggregate concrete (RAC) has been attracting worldwide research interests due to its ecological and economic significance. However, RAC has so far mainly been limited to non-structural applications or structural members subjected to static loadings. In this study, the effects of strain rates, the confinement, and the RCA replacement ratio on the mechanical behaviors of confined recycled aggregate concrete (CRAC) are investigated through dynamic tests. The corresponding dynamic increase factor (DIF), confining increase factor (CIF) and replacement ratio influence factor (RIF) are formulated. A constitutive model for CRAC is then proposed through applying DIFs, CIFs, and RIFs to the characteristic parameters. Finally, the predicted stress-strain relationships of test samples using the proposed constitutive model are compared and evaluated with the experimental results. It is concluded that the proposed constitutive model can be applied to the further dynamic nonlinear analysis of RAC structures.  相似文献   

15.
In this study, a CO2 curing process was adopted in order to promote rapid strength development of concrete blocks containing recycled aggregates. The influence of several factors associated with the curing conditions on the curing degree and compressive strength of the concrete blocks were investigated, including curing time, temperature, relative humidity, pressure and post-water curing after the pressurized CO2 curing (PCC) process. In addition a flow-through CO2 curing (FCC) method at ambient pressure was also used. The results of the PCC experiments showed that, considerable curing degree and compressive strength were attained during the first 2 h of CO2 curing, and a prolonged curing time yielded slower gains. The variations of temperature from 20 °C to 80 °C and relative humidity from 50% to 80% had limited impacts on PCC; but the effects of CO2 gas pressure on the curing degree and compressive strength were more pronounced. The post-water curing after pressurized CO2 curing allowed the concrete blocks to attain further strength gain but its effectiveness was inversely proportional to the CO2 curing degree already attained. The FCC experimental results indicated that although a lower curing degree and slower strength development at the early age were observed, after 24 h of curing duration, they were comparable to those obtained by the PCC method. To assess the thermal stability of the concrete blocks, the optimum CO2 curing regime was adopted for preparing the concrete blocks with recycled aggregates, and the CO2 cured specimens exhibited better fire resistance than the water-cured ones at 800 °C.  相似文献   

16.
Concretes containing mixed recycled aggregate (RA) have a larger number of coarse aggregate/paste interfacial transition zones (ITZs) than conventional concretes, due to the various component materials present in recycled aggregate. This study investigated the properties of various RA/paste ITZs in concrete using nanoindentation and scanning electron microscopy (SEM) and analysed the possible impact of the properties of the ITZs on the macro-mechanical performance of recycled concrete. It was found that the elastic modulus of the ITZ varies with the type of constituent materials present in recycled aggregate, with ITZs associated with organic components (e.g. wood, plastic and asphalt) exhibiting lower minimum elastic modulus values. The impact of ITZ properties on macro-mechanical properties of concrete depends on the relative content of different constituent materials present in the recycled aggregate and the micro-mechanical properties of the ITZs involved.  相似文献   

17.
Assessment of the optimal mixture is an important issue to obtain desired quality. This paper integrates grey relational analysis and an objective weighting technique into the Taguchi method to propose the weighted Grey-Taguchi method. This method can be employed to assess the optimal mixture with multiple responses. In the application of this method, water/cement ratio, volume ratio of recycled coarse aggregate, replacement by river sand, content of crushed brick, and cleanliness of aggregate are selected as control factors with responses of slump, slump-flow, resistivity (7-day, 14-day, 28-day), ultrasonic pulse velocity (7-day, 14-day, 28-day), and compressive strength (7-day, 14-day, 28-day) to assess the optimal mixture of recycled aggregate concrete. Results demonstrate and verify that the optimal mixture has a water/cement ratio of 0.5, a volume fraction of recycled coarse aggregate of 42.0%, 100% replacement of river sand, 0% crushed brick, and water-washed aggregates.  相似文献   

18.
The growing difficulty in obtaining natural coarse aggregates (NCA) for the production of concrete, associated to the environmental issues and social costs that the uncontrolled extraction of natural aggregates creates, led to a search for feasible alternatives. One of the possible paths is to reuse construction and demolition waste (CDW) as aggregates to incorporate into the production of new concrete. Therefore, a vast and detailed experimental campaign was implemented at Instituto Superior Técnico (IST), which aimed at determining the viability of incorporating coarse aggregates from concrete and ceramic brick wall debris, in the production of a new concrete, with properties acceptable for its use in new reinforced and pre-stressed structures. In the experimental campaign different compositions were studied by incorporating pre-determined percentages of recycled coarse concrete aggregates and recycled coarse ceramic plus mortar particles, and the main mechanical, deformability and durability properties were quantified, by comparison with a conventional reference concrete (RC). In this article, these results are presented in terms of the durability performance of concrete, namely water absorption, carbonation and chlorides penetration resistance.  相似文献   

19.
In this research work, High Performance Concrete (HPC) was produced employing 30% of fly ash and 70% of Portland cement as binder materials. Three types of coarse recycled concrete aggregates (RCA) sourced from medium to high strength concretes were employed as 100% replacement of natural aggregates for recycled aggregate concrete (RAC) production. The specimens of four types of concretes (natural aggregate concrete (NAC) and three RACs) were subjected to initial steam curing besides the conventional curing process. The use of high quality RCA (>100 MPa) in HPC produced RAC with similar or improved pore structures, compressive and splitting tensile strengths, and modulus of elasticity to those of NAC. It was determined that the mechanical and physical behaviour of HPC decreased with the reduction of RCA quality. Nonetheless steam-cured RACs had greater reductions of porosity up to 90 days than NAC, which led to lower capillary pore volume.  相似文献   

20.
In order to enhance the CO2 curing efficiency of concrete block prepared with recycled aggregates, several material characteristics of the concrete block including moisture content, bulk density, aggregate to cement ratio, recycled aggregate content and types of binders, were studied experimentally to assess their effects on the CO2 curing process. The results indicated that, during 2 h of CO2 curing period, the moisture content and aggregate to cement ratio of the prepared blocks had significant effects on the CO2 curing degree and the compressive strength. Appropriate pre-drying of the block specimens before CO2 curing enabled the maximum curing degree, and the compressive strength attained was comparable or superior to that of the 6 h steam cured blocks. The bulk density and recycled aggregate content of the prepared blocks would also influence the CO2 curing degree, but their effects on compressive strength were more complex. It was confirmed that the presence of recycled aggregate in the concrete blocks can promote the CO2 curing efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号