首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integration of organic nanoclay into bio-based polyurethane (PU) foam is a promising alternative to enhance the foam’s properties via green technology. In this paper, modified diaminopropane montmorillonite (DAP-MMT) nanoclay was introduced into palm oil-based PU foam at different weight loadings, namely, 0, 2, 4, 6, 8, and 10 wt.%, in order to investigate the effects on the mechanical and thermal properties of the foam. Several tests and characterizations were carried out to study the surface morphology, density, compressive strength and thermal stability of the foam. It was found that foam exhibited an exfoliated or intercalated microstructure based on the DAP-MMT contents. The X-ray diffraction analysis showed that below 4 wt.%, the foams displayed exfoliated structures while beyond the value, the foams exhibited the intercalated morphologies. Closed cells with different cell sizes were observed when the DAP-MMT contents were varied. Meanwhile, thermal stability and compressive strength of foams increased with increasing DAP-MMT contents up to 4 wt.%, as shown by thermogravimetry analysis and compression test, respectively.  相似文献   

2.
Dodecyl sulfate (DS), one kind of sulfate anion, was intercalated in the interlayer space between CoAl layered double hydroxide (CoAl-LDH) layers, and then polyurethane (PU) based nanocomposites were prepared by in situ intercalation polymerization with different amounts of the organo-modified CoAl-LDH. An exfoliated dispersion of CoAl-LDH layers in PU matrix was verified by the disappearance of the (0 0 3) reflection of the XRD results when the LDH loading was less than 2.0 wt%. Tensile testing indicated that excellent mechanical properties of PU/LDH nanocomposites were achieved. The weak alkaline catalysis of DS to polyurethane chains, combined with the dehydration and structural degradation of the LDH below 300 °C, accounted for the process of proceeded degradation as shown in TGA results. The real-time FTIR revealed that the as-prepared nanocomposites had a slower thermo-oxidative rate than neat PU from 160 °C to 340 °C, probably due to the barrier effect of LDH layers. These results suggested potential applications of CoAl-LDH as a promising flame retardant in PUs.  相似文献   

3.
Dispersibility of graphene sheets in polymer matrices and interfacial interaction are challenging for producing graphene-based high performance polymer nanocomposites. In this study, three kinds nanofillers; pristine graphene nanoplatelets (GNPs), graphene oxide (GO), and functionalized graphene sheet (FGS) were used to prepare polyurethane (PU) composite by in-situ polymerization. To evaluate the efficacy of functional groups on the graphene sheets, PU reinforced with GNPs, GO, and FGS were compared through tensile testing and dynamic mechanical thermal analysis. The Young's moduli of 2 wt% GO and FGS based PU nanocomposites were found significantly higher than that of same amount of GNPs loading as an evidence of the effect of functional groups on graphene sheets for the mechanical reinforcement. The strong interaction of FGS with PU was responsible to exhibit notably high modulus (25.8 MPa) of 2 wt% FGS/PU composite than the same amount of GNPs and GO loading even at elevated temperature (100 °C).  相似文献   

4.
Fibrous composites are commonly found in soft tissue but few man-made composites are used for soft tissue replacement. In this study, fibrous composites, made from biaxially drawn ultra-high molecular-weight polyethylene (BD-UHMWPE) and polyether polyurethane materials, were fabricated by solution casting and heat compaction. The effects of processing conditions on tensile properties of the composites were evaluated, in terms of the molecular structures of the polyurethane materials, thermal behavior of the UHMWPE, and the microstructures of the as-made composites. The results indicated that composites of improved tensile properties were constructed in the form of interpenetration of polyurethane through the stacks of the BD-UHMWPE. The tensile strength and modulus of the composites (made from Toyobo TM5 and Solupor™ 7P03) are approximately 69 and 210 MPa. The as-made composite has a significant improvement on its toughness, about 5 times increase in the tensile toughness if compared to that of the BD-UHMWPE. A possible interlocking structure was suggested for those polyurethane materials (Toyobo TM5) that might be recrystallized during heat compaction. The polyurethane like Tecoflex 80A, not indicating a symptom of annealing crystallization, has no impact on increasing the tensile properties but a decrease with plasticizing the materials.  相似文献   

5.
In the work the methodology and results of the investigations that concern rigid polyurethane foams modified with natural fibres and oil-based polyol are presented. The goal of the investigations was to obtain the cellular, polyurethane composites with the heat insulating and mechanical properties similar or better as in the case of the reference material. The obtained polyurethane composites had apparent densities about 40 kg/m3. The modified composites contained the considerable part of biodegradable components on the base of renewable raw materials. The influence of the rapeseed oil-based polyol, flax and hemp fibres of different length on the cell structure, closed cells content, apparent density, thermal conductivity and compression strength of the rigid polyurethane composites are analyzed. In the case of application of fibre in the amount of 5% php (per hundred polyols) the foam composites with the highest values of compressive strength and the lowest thermal conductivity were obtained.  相似文献   

6.
Magnetically-sensitive polyurethane composites, which were crosslinked with multi-walled carbon nanotubes (MWCNTs) and were filled with Fe3O4 nanoparticles, were synthesized via in situ polymerization method. MWCNTs pretreated with nitric acid were used as crosslinking agents. Because of the crosslinking of MWCNTs with polyurethane prepolymer, the properties of the composites with a high content of Fe3O4 nanoparticles, especially the mechanical properties, were significantly improved. The composites showed excellent shape memory properties in both 45 °C hot water and an alternating magnetic field (f = 45 kHz, H = 29.7 kA m−1). The shape recovery time was less than one minute and the shape recovery rate was over 95% in the alternating magnetic field.  相似文献   

7.
Hybrid laminated composites were fabricated based on high-density flexible polyurethane foam and reinforced with inter/intra-ply hybrid laminates. Transient responses of hybrid composites under quasi-static and dynamic loadings with various thicknesses and expansion factors were comparatively investigated. Experimental results revealed that foam cell collapse and hybrid laminates rupture were dominant mechanisms of energy absorption. Interlaminar stress and composite tensile strength determined the compressive potential energy and double-peak behavior. Quasi-static bursting and puncture resistances exhibited totally different relationships to various constructions and expansion factors. Energy dissipation capacity is influenced more significantly by the constant rate of transverse (CRT) puncture than dynamic puncture process. CRT puncture resistance is superior to the corresponding dynamic puncture resistance for all constructions. The hybrid laminated composites contributes to eliminate more than 95% of the incident force in the drop weight impact test. Compared with non-laminated panel, the hybrid laminated composites exhibited higher resistance to static and dynamic loadings.  相似文献   

8.
Soy polyol-based polyurethane (PU) nanocomposites (PUNCs) with 1 wt.% hydroxyl-functionalized multi-wall carbon nanotubes (CNT-OH) were prepared via in situ polymerization. CNT-OH increased the glass transition temperature as well as significantly improved the thermal stability and conductivity of the PUNCs. The PUNC Young’s modulus was much lower than that of neat PU. The tensile strength of the PUNCs with large CNT-OH diameters was slightly higher than that of neat PU. Compared with neat PU, the elongation at break of the PUNCs improved by 30%, 39%, and 45% with increased CNT-OH diameters. Scanning and transmission electron microscopic methods revealed CNT-OH relatively homogeneous dispersion in the PU matrix.  相似文献   

9.
Five types of solid and porous polyurethane composites containing 5–20 wt.% of Bioglass® inclusions were synthesized. Porous structures were fabricated by polymer coagulation combined with the salt-particle leaching method. In-vitro bioactivity tests in simulated body fluid (SBF) were carried out and the marker of bioactivity, e.g. formation of surface hydroxyapatite or calcium phosphate layers upon immersion in SBF, was investigated. The chemical and physical properties of the solid and porous composites before and after immersion in SBF were evaluated using different techniques: Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA) and Thermogravimetric Analysis (TGA). Moreover the surface structure and microstructure of the composites was characterised by Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM), respectively. Mercury intrusion porosimetry, SEM and microtomography (μCT) were used to determine pore size distribution and porosity. The fabricated foams exhibited porosity >70% with open pores of 100–400 μm in size and pore walls containing numerous micropores of <10 μm. This pore structure satisfies the requirements for bone tissue engineering applications. The effects of Bioglass® addition on microstructure, mechanical properties and bioactivity of polyurethane scaffolds were evaluated. It was found that composite foams showed a higher storage modulus than neat polyurethane foams. The high bioactivity of composite scaffolds was confirmed by the rapid formation of hydroxyapatite on the foam surfaces upon immersion in SBF.  相似文献   

10.
Multi-walled carbon nanotubes (MWCNTs) were chemically functionalized to prepare thermoplastic polyurethane (PU) composites with enhanced properties. In order to achieve a high compatibility of functionalized MWCNTs with the PU matrix, polycaprolactone diol (PCL), as one of PU’s monomers, was selectively grafted on the surface of MWCNTs (MWCNT–PCL), while carboxylic acid groups functionalized MWCNTs (MWCNT–COOH) and raw MWCNTs served as control. Both MWCNT–COOH and MWCNT–PCL improved the dispersion of MWCNTs in the PU matrix and interfacial bonding between them at 1 wt% loading fraction. The MWCNT–PCL/PU composite showed the greatest extent of improvement, where the tensile strength and modulus were 51.2% and 33.5% higher than those of pure PU respectively, without sacrificing the elongation at break. The considerable improvement in both mechanical properties and thermal stability of MWCNT–PCL/PU composite should result from the homogeneous dispersion of MWCNT–PCL in the PU matrix and strong interfacial bonding between them.  相似文献   

11.
The electrostrictive properties of a polyether-based polyurethane elastomer and its corresponding composites filled with conductive carbon black (CB) were studied by measuring the thickness strain SZ induced by external electric fields E. For films with thicknesses of approximately 50 μm, the apparent electrostrictive coefficient M was measured at low electric fields, ? 4 V/μm, and different CB contents (up to a volume fraction of 2%). Dielectric measurements in AC mode were performed in order to determine the percolation threshold fc, which was 1.25 v%. This optimal volume fraction yielded a remarkable threefold increase in M, associated with an increase of the dielectric constant by a factor 7, in comparison with pure PU. This enhancement of the electric field-induced strain and apparent electrostriction was mainly triggered by an increase of the dielectric constant, even if the intrinsic electrostriction coefficient Q was decreased. The nanocomposites thus seem to be very attractive for low-frequency electromechanical applications. Above fc, their conductivity was raised and their electrostrictive activity lost. Finally, there is a good agreement between the experimentally determined dependence on the CB content of the M coefficient and the theoretical estimation calculated from dielectric and mechanical measurements.  相似文献   

12.
Three novel organic–inorganic hybrid molecules, layered zirconium phosphates or phosphonates, were synthesized. To study the effects of organic chain length of them on the structure and properties of polymer nanocomposites, the polyurethane/α-zirconium phosphate (PU/ZrP), polyurethane/zirconium 2-aminoethylphosphonate (PU/ZrAEP) and polyurethane/zirconium 2-(2-(2-(2-aminoethylamino)ethylamino)ethylamino) ethylphosphonate (PU/Zr(AE)4P) nanocomposites were prepared, and characterized by Fourier Transform Infrared (FT-IR) spectroscopy, wide-angle X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and tensile testing. It was revealed that morphological, mechanical, and thermal properties of these nanocomposites were strongly dependent on the organic chain length of the layered zirconium phosphonates. The results showed that the fillers with longer chain length exhibited better dispersion in the PU matrix. As expected, the mechanical properties and water resistance were improved with the increasing of organic chain length of fillers, which attributed to better interfacial adhesion between fillers and PU matrix.  相似文献   

13.
This communication reported the substantial improvement in the mechanical and thermal properties of a polyurethane (PU) resulting from the incorporation of well-dispersed graphene oxide (GO). The stress transfer benefited from the covalent interface formed between the PU and GO. The Young’s modulus of the PU was improved by ∼7 times with the incorporation of 4 wt% GO, and the improvement of ∼50% in toughness was achieved at 1 wt% loading of GO without losing elasticity. Significant improvements were also demonstrated in the hardness and scratch resistance measured by nano-indentation. Thermogravimetric analysis revealed that the decomposition temperature was increased by ∼50 °C with the addition of 4 wt% GO.  相似文献   

14.
Herein, oxidation, polyvinyl pyrrolidone (PVP) coating and reduction are used to modify the surface of graphene in thermoplastic polyurethane (TPU)/graphene nanocomposites. It is demonstrated that graphene could be easily dispersed in TPU with PVP absorbed on reduced graphene oxide (RGO) as stabilizer during reduction. In the stress–strain curves for these composites containing GO, PVP coated GO (GO/PVP) and reduced GO/PVP (RGO/PVP) as filler, PVP coating and reduction can largely enhance the stress in low modulus region. It is thought to largely related with enhanced interfacial interaction between filler and matrix and healing of graphene structure during reduction. Consequently, the modulus of TPU/GO/PVP and TPU/RGO/PVP is significantly increased. Meanwhile, an electrical percolation threshold of 0.35 wt.% is obtained for TPU/RGO/PVP. Comparing with the results in literature, the filler surface modification used in this study has created nanocomposites with a good balance between electrical conductivity and mechanical properties.  相似文献   

15.
Knowledge of how polyurethanes, PU, complexity affects their derived multiwalled carbon nanotube, MWCNT, composites could shed important clues for preparing future tailored PU/MWCNT elastic, strong and electrically conductive composites. In this regard, hard segment content and nature, along with MWCNT functionalisation, are believed to have great influence on both nanoscale PU/MWCNT self assembling mechanisms and on final composites properties. In this work the effect of PU hard segment content into composites was analysed. According to the results, a preferential interaction of nanotubes with polyurethanes hard segments can be assumed although nanotubes introduction hindered both soft and hard segments crystallisation. In all cases carbon nanotubes percolative network formation seemed to be crucial for obtaining significant reinforcement, being observed at this stage, a reduction of ductility, phenomena which is related to an increase on hard domains interconnections by MWCNT. The hard to soft segment ratio into PU plays a crucial role on determining the stress transfer to MWCNT. In addition, PU hard domains nature has important effect on nanotubes reinforcing character, this fact being related to the different PU intrinsic morphologies as well as different PU-MWCNT interactions.  相似文献   

16.
Methylene-bis-ortho-chloroanilline (MOCA), an excellent cross-linker widely used to prepare cured polyurethane (PU) elastomers with high performance, was used to modify a multi-walled carbon nanotube. PU/carbon nanotube (CNT) nanocomposites were prepared by incorporation of the MOCA-grafted CNT into PU matrix. Fourier transform infrared spectra have shown that the modified CNTs have been linked with PU matrix. The microstructure of composites was investigated by Field-Emission Scanning Electron Microscopy. The results of Dynamic Mechanical Thermal Analysis and Differential Scanning Calorimetry have investigated the grafted CNTs as cross-linker in the cured composites. The studies on the thermal and mechanical properties of the composites have indicated that the storage modulus and tensile strength, as well as glass transition temperature and thermal stability are significantly increased with increasing CNT content.  相似文献   

17.
High density polyethylene (HDPE) were filled with expanded graphite particles that have different particle sizes, 5–7 μm (EG5) and 40–55 μm (EG50) in diameter. Nanocomposites were prepared by the melt-mixing technique using EG5 and EG50 at different weight ratios. Transmission Electron Microscopy (TEM) was used to observe the morphology of the nanocomposites. X-ray diffraction patterns of EG5-HDPE and EG50-HDPE nanocomposites were investigated. Tensile tests were carried out to determine tensile strength, Young’s modulus and elongation at break values. The storage modulus and loss modulus were evaluated by Dynamic Mechanical Analysis (DMA). The effect of EG5 and EG50 on electrical conductivity of HDPE was also determined. The tensile strength of HDPE increased 18.7% and 8.5% when 40 wt% EG5 and EG50 was added into HDPE, respectively. The storage modulus of EG5-HDPE and EG50-HDPE is higher compared to that of HDPE. Incorporation of EG5 and EG10 into HDPE also increased the relaxation transition peak of HDPE. The values of electrical conductivity for EG50-HDPE nanocomposites under the same filler content obtained higher in comparison with those for EG5-HDPE nanocomposites.  相似文献   

18.
This paper presents a theoretical formula to predict the instantaneous folding force of a polyurethane foam-filled square column as a single unit of square honeycombs under axial loading. For this purpose, sum of the dissipated energy rate under folding deformations of the square column and the dissipated energy rate of polyurethane foam compression was equated to the work rate of the external force on the structure. The dissipated energy rate of compression and deformation of polyurethane foam was obtained by presenting a new deformation model and through the reduced volume ratio. The final formula obtained, reasonably predicts the instantaneous folding force of the polyurethane foam-filled square column. Finally, according to the calculated theoretical relation, the instantaneous folding force of the foam-filled square column was sketched versus the axial displacement and compared to the experimental results, which showed a good correlation.  相似文献   

19.
Recently, there has been a rapid growth in research and innovation in the natural fibre composite (NFC) area. Interest is warranted due to the advantages of these materials compared to others, such as synthetic fibre composites, including low environmental impact and low cost and support their potential across a wide range of applications. Much effort has gone into increasing their mechanical performance to extend the capabilities and applications of this group of materials. This review aims to provide an overview of the factors that affect the mechanical performance of NFCs and details achievements made with them.  相似文献   

20.
Polydimethylsiloxane (PDMS) hybrid composites consisting of exfoliated graphite nanoplatelets (xGnPs) and multiwalled carbon nanotubes functionalized with hydroxyl groups (MWCNTs-OH) were fabricated, and the effects of the xGnP/MWCNT-OH ratio on the thermal, electrical, and mechanical properties of polydimethylsiloxane (PDMS) hybrid composites were investigated. With the total filler content fixed at 4 wt%, a hybrid composite consisting of 75% × GnP/25% MWCNT-OH showed the highest thermal conductivity (0.392 W/m K) and electrical conductivity (1.24 × 10−3 S/m), which significantly exceeded the values shown by either of the respective single filler composites. The increased thermal and electrical conductivity found when both fillers are used in combination is attributed to the synergistic effect between the fillers that forms an interconnected hybrid network. In contrast, the various different combinations of the fillers only showed a modest effect on the mechanical behavior, thermal stability, and thermal expansion of the PDMS composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号