首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The characteristics of plastic scintillating fibers (PSF) are measured for X and γ photons in the energy range 5 keV to 1.5 MeV. It is shown that a very thin (50 μm) slit can be recorded with an array of very thin fibers having 50 μm diameter so that the main interaction mechanism is photoelectric absorption, instead of Compton scattering for low energy X-rays. The optical light attenuation, global efficiency and energy resolution have been measured for a system composed of 1 mm diameter fibers and a photomultiplier. An X-ray beam position detector is realized, using an intensified camera, allowing a 4% precision on the position. The effect of bending the fiber is also evaluated  相似文献   

2.
We report on a new photon-counting detector possessing unprecedented spatial resolution and moderate spectral resolution for 0.1-100 keV X-rays. It consists of an X-ray charge-coupled device (CCD) and a scintillator. The scintillator is directly coupled to the back surface of the X-ray CCD. Low-energy X-rays below 10 keV can be directly detected by the CCD. The majority of hard X-rays above 10 keV pass through the CCD but can be absorbed by the scintillator, generating visible photons. We coupled needlelike CsI(Tl) on the front surface of the back-illuminated (BI) CCD. The high detection efficiency of BI CCDs in the visible band enables us to collect visible photons emitted from the CsI(Tl) efficiently, leading to the moderate spectral resolution of 28.4% at 22.1 keV and 25% at 59.5 keV. We also investigated the imaging capability of our device and demonstrated high resolution imaging with an accuracy of 10 /spl plusmn/3 /spl mu/m at 17.4 keV.  相似文献   

3.
A high-energy resolution PIXE system developed at a heavy ion microbeam line was used to analyze low energy X-rays below 1 keV. The system is equipped with a plane crystal spectrometer with a gas flow position sensitive proportional counter (PSPC), which enables high-energy resolution PIXE analysis using a microbeam. In order to improve the detection efficiency for the low energy X-rays, the X-ray entrance window of the PSPC was replaced with a thin polymer film supported by a metal grid. As the result, the detectable energy range was extended to carbon K X-rays and chemical effect in Fe and Cu L X-rays could be detected. A preliminary result of high-energy resolution PIXE mapping of Cu mesh (#500) showed that it is possible to obtain the Cu L mapping image using a 2 MeV proton microbeam with the size of 20 × 20 μm.  相似文献   

4.
The authors present a method to measure the subpixel structure of a charge-coupled device (CCD), information necessary to accurately determine (<1% uncertainty) the absolute detection efficiency of the device. Their approach uses a thin metal film with periodically spaced holes (small, compared to the pixel size) to localize incident X-rays to a particular region of the pixel. The mesh is rotated to create a small angular misalignment between the grid holes and the CCD pixels, producing a moire effect in the data. The resultant moire pattern is compared to a CCD model, and a best fit minimization technique is used to constrain the parameters that describe the subpixel structure. This technique was developed to measure and calibrate the X-ray CCD's that will comprise one of the two focal plane instruments on-board AXAF, but it is applicable for measuring the structure of any pixelated solid state device  相似文献   

5.
Gallium Arsenide pixel detectors with an area of 170×320 μm2 and thickness of 5 μm, realized by molecular beam epitaxy, have been designed and tested with X- and γ rays. No significant charge trapping effects have been observed, and a charge collection efficiency of 100% has been measured. At room temperature an energy resolution of 671 eV full width at half maximum (FWHM) at 59.54 keV has been obtained, with an electronic noise of 532 eV FWHM. With the detector cooled to 243 K, the electronic noise is reduced to 373 eV FWHM, and the Kα and Kβ lines of the 55Fe spectrum can be resolved. The Fano factor for GaAs has been measured at room temperature with 59.5 keV photons yielding F=0.12±0.01  相似文献   

6.
The authors describe a novel technique for the nondestructive evaluation of microelectronic components using X-ray microtomography. Existing microtomography systems have spatial resolution of order 1 μm but require X-ray source brilliance that would become unachievable at higher resolutions. The authors describe an imaging method that reduces the number of X-ray photons required from the source without degrading the resolution. The feasibility of the technique is demonstrated through a series of computer simulations. The results are verified with real data from synchrotron experiments  相似文献   

7.
CVD金刚石膜X射线探测器的研制及性能研究   总被引:1,自引:0,他引:1  
金刚石以其独特的性能成为辐射探测器的理想材料.采用HFCVD方法制备了高质量、(100)取向的CVD金刚石膜,在此基础上研制出X射线探测器.使用55Fe 5.9keV X射线研究了CVD金刚石膜探测器的光电流和电荷收集效率.结果表明,探测器在偏压加到100V还具有好的欧姆接触;电场为50kV·cm-1时的暗电流与光电流分别为16.3和16.8nA;电荷收集效率η为45.1%,对应的电荷收集距离δ(CCD)为9.0μm.  相似文献   

8.
The design and characteristics of the spectrometer for beta-particles and conversion electrons in the energy range from 15 to 3000 keV and X-ray radiation from 2 to 60 keV are presented. Radiation is detected by a 4.5-mm-thick SiLi detector with a sensitive area of 500 mm/sup 2/. The energy resolution for conversion electrons with the energy of 624 keV is 2.0 keV and, for X-rays with the energy of 5.9 keV, is 280 eV.  相似文献   

9.
This work deals with the study of a Schottky junction used as an X- and γ-ray detector in a spectrometer operated in the temperature range from -30°C to +22°C. The device (7 mm2 active area and 100 μm thickness), fabricated on liquid encapsulated Czochralski (LEG) semi-insulating Gallium Arsenide, is designed with a noninjecting ohmic contact which allows biasing voltages up to 550 V. At room temperature (22°C) the energy resolution is found to be relatively poor (15.5-keV full-width at half-maximum (FWHM) at 59.5 keV) due to the large junction reverse current, whose density (7-37 nA/mm2 at Vbias=100-500 V) is within the typical values for Schottky junctions on SI LEC GaAs. By cooling of the detector to -30°C, the noise of the reverse current is drastically lowered, thus achieving electronic noise levels around 160-180 rms electrons (1.6-1.8 keV FWHM), At 500-V bias, the 241Am spectrum has been resolved down to an energy of 4 keV with charge collection efficiency of cce=97% and a resolution of about 2-keV FWHM for the Np L lines and 2.4-keV FWHM for the 59.5-keV γ photons. The linearity of the detector has been measured to be better than ±0.6% within the explored energy range (14-59 keV). From the experimental spectra, it has been analyzed how either the electronic noise or the trapping of the signal charge contribute to the energy resolution of the spectrometer. The result is that despite the high measured cce. The trapping gives a contribution higher than 1.5 keV FWHM for the 59.5-keV spectral line. A comparison between the experimental results and Monte Carlo simulations, based on the Hecht model of charge trapping in detectors, is shown to give a satisfactory justification of the observed phenomena. A total mean drift length of carriers has been experimentally derived, finding an exponential dependence upon the bias voltage applied to the detector  相似文献   

10.
The results of scanning a finely collimated beam of 5.9 keV X-rays across the faces of three different Si(Li) X-ray detectors are interpreted in terms of an active area of good charge collection and peripheral regions of incomplete charge collection, both within the manufacturers' stated areas. The data are correlated with absolute efficiencies determined using calibrated radionuclide X-ray ernitters. The hazards of spectral artefacts from the imperfect regions in the contexts of XRF and PIXE are stressed.  相似文献   

11.
The L X-ray photons emitted by transuranic (TRU) elements are expected to be useful for developing nondestructive TRU monitors. Energy spectra of L X-rays emitted by 241Am, 238Pu and 239Pu sources were measured by a transition edge sensor (TES) microcalorimeter, which allowed precise peak identification with high energy resolution. In the measurements using the TES microcalorimeter, the full width at half-maximum energy resolution was 62.6 eV at 17.222 keV for 239Pu source, 62.5 eV at 17.222 keV for 238Pu source and 60.9 eV at 17.751 keV for 241Am source. This study demonstrates the separation of 241Am and plutonium isotopes by L X-ray spectroscopy using a TES microcalorimeter.  相似文献   

12.
The authors have designed and built a multi-channel cadmium telluride detector array to test its suitability as an X-ray imaging sensor for dual energy X-ray absorptiometry. The X-ray imaging sensor was constructed of 64 CdTe detector elements with high frequency current amplifiers, discriminators, and counters. The detector elements were operated in the photon counting mode and output pulses induced by the X-ray photons were separated into two energy levels according to their height. The energy resolution of the detector elements was 18.7% to 59.54 keV gamma-rays. In combination with a K-edge filter to produce dual energy X-rays, the X-ray imaging sensor was able to generate two energy X-ray images simultaneously over a short time. By applying a simple energy subtraction method to these images, bone phantoms were distinguished from the overlying tissue phantoms and their densities could be successfully measured. It was clearly demonstrated that this X-ray imaging sensor using CdTe crystals has good potential for high speed bone densitometry  相似文献   

13.
Gas proportional scintillation counters are room-temperature, general-purpose X-ray detectors, which are used in many applications due to their good energy resolution, which can be better than standard proportional counters by a factor of ~2. However, for energies higher than ~20 keV, the experimentally measured energy resolution is found to deviate from the usual 1/√E law. Under these circumstances, it is of great interest to understand the mechanisms involved in the detection of higher energy X-rays. Since the photoelectrons will then carry most of the absorbed energy, we study in this work the response of xenon detectors to electrons with energies up to ~200 keV, using a Monte Carlo simulation technique. Distributions of the number of primary (subionization) electrons produced per parent electrons with energy E e are calculated, and results are presented for the Fano factor, the w-value and the intrinsic energy resolution as a function of Ee in the range 20-200 keV. The influence of an applied reduced electric field on the results is assessed, showing that for 200 keV electrons an increase in the field from 0.1 to 0.8 Td causes an increase as high as 35% in the intrinsic energy resolution  相似文献   

14.
A soft X-ray microbeam using proton-induced X-ray emission (PIXE) of characteristic titanium (Kα 4.5 keV) as the X-ray source has been developed at the Radiological Research Accelerator Facility (RARAF) at Columbia University. The proton beam is focused to a 120 μm × 50 μm spot on the titanium target using an electrostatic quadrupole quadruplet previously used for the charged particle microbeam studies at RARAF. The proton induced X-rays from this spot project a 50 μm round X-ray generation spot into the vertical direction. The X-rays are focused to a spot size of 5 μm in diameter using a Fresnel zone plate. The X-rays have an attenuation length of (1/e length of ∼145 μm) allowing more consistent dose delivery across the depth of a single cell layer and penetration into tissue samples than previous ultrasoft X-ray systems. The irradiation end station is based on our previous design to allow quick comparison to charged particle experiments and for mixed irradiation experiments.  相似文献   

15.
Hybrid pixel detector arrays that convert X-rays directly into charge signals are under development at NOVA for application to digital mammography. This technology also has wide application possibilities in other fields of radiology and in industrial imaging for applications in nondestructive evaluation and inspection. These detectors have potentially superior properties compared to either emulsion based film, which has nonlinear response to X-rays, or phosphor-based detectors in which there is an intermediate step of X-ray to light photon conversion. Potential advantages of direct conversion detectors are high quantum efficiencies (QE) of 98% or higher (for 0.3 mm thick CdZnTe detector with 20 keV X-rays), improved contrast, high sensitivity and low intrinsic noise. These factors are expected to contribute to high detective quantum efficiency (DQE). The prototype hybrid pixel detector developed has 50×50 microns pixel size, and is designed to have linear response to X-rays, and can support a dynamic range of 14 bits. Modulation Transfer Function (MTF) is measured on a l-mm silicon detector system where 10% or better modulations are obtained at 10 lp/mm spatial frequency. Preliminary DQE measurements of the same system yields a value of 55% at zero spatial frequency. Here, the authors report data of their first full size prototype readout ASIC chips hybridized with both silicon and CdZnTe detector arrays and present initial MTF and DQE measurement results as well as some test images  相似文献   

16.
Review of X-ray dark-field imaging under development is presented. Its goal is its application to clini-cal diagnosis of organs that have been invisible by the ordinary techniques. In order to clinically visualize tissues in detail one needs high contrast and high spatial resolution say~50μm. This X-ray optics comprises a Bragg asymmet-ric monochro-collimator and a Bragg case or a Laue case filter with capability of analyzing angle in a parallel posi-tion. Their diffraction index is 4,4,0 and the X-ray energy 35 keV (λ=0.0354 nm). The filter has 0.6 mm thickness in the Bragg case or 1.075 mm or 2.15 mm thickness in the Laue case. Under this condition only the refracted X-rays from object can transmit through the filter while the beam that may receive absorption and/or phase change will not.Soft tissues at human joints thus taken show high contrast images so that the DFI is promising for clinical diagnosis.Preliminary X-ray absorption images of another clinical candidates of ear bones are also shown.  相似文献   

17.
Molybdenum L-shell X-rays were produced by Xeq+ (q = 25-30) bombardment at low energies from 2.65 to 4.55 keV/amu (350-600 keV). We observed a kinetic energy threshold of Mo L-shell ionization down to 2.65-3.03 keV/amu (350-400 keV). The charge state effect of the incident ions was not observed which shows that the ions were neutralized, reaching an equilibrium charge state and losing their initial charge state memory before production of L-shell vacancies resulted in X-ray production. The experimental ionization cross sections were compared with those from Binary Encounter Approximation theory. Taking into account projectile deflection in the target nuclear Coulomb field, the ionization cross section of Mo L-shell near the kinetic energy threshold was well described.  相似文献   

18.
To improve spatial resolution, positron emission tomography (PET) systems are being developed with finer detector elements. Unfortunately, using a smaller crystal size increases intercrystal Compton scatter and X-ray escape crosstalk, causing positioning errors that can lead to degradation of image contrast. We investigated the use of extremely thin (<300 μm) lead strips for passive shielding of this intercrystal crosstalk. Using annihilation gamma rays and small (2- and 3-mm wide) bismuth germanate (BGO) crystal detectors in coincidence, crosstalk studies were performed with either two small adjacent crystals [(one-dimensional) (1-D)] or one crystal inside a volume of BGO [(two-dimensional) (2-D)]. The fraction of Compton scattered events from one crystal into an adjacent one was reduced, on average, by a factor of 3.2 (2.2) in the 1-D experiment and by a factor of 3.0 (2.1) in 2-D one, with a 300 (150)-μm-thick lead strip in between the crystals and a 300-700-keV energy window in both crystals. We could not measure a reduction in bismuth X-ray crosstalk with the use of lead septa due to the production of lead X-rays of similar energy. The full-width at half-maximum (FWHM) of the coincident point-spread function (CPSF) was not significantly different for the 1- and 2-D studies, with or without the different septa in place. However, the FWTM was roughly 20% smaller with the 300-μm lead shielding in place. These results indicate that intercrystal crosstalk does not affect the positioning resolution at FWHM, but does affect the tails of the CPSF. Thus, without introducing any additional dead area, an insertion of very thin lead strips can reduce the extent of positioning errors. Reducing the intercrystal crosstalk in a high-resolution PET detector array could potentially improve tomographic image contrast in situations where intercrystal crosstalk plays a significant role in event mispositioning  相似文献   

19.
Two different type of X-ray detectors were used for simultaneous PIXE measurement over a wide element range. One is a pure-Si detector with a thin Be-window, which is to keep high sensitivity for the detection of low Z element. The other is a CZT detector with a thick Be window of 250 μm. It has almost 100% detection efficiency for the X-rays with high energy of up to about 80 keV. By using the CZT detector that was arranged to have a large solid angle, the detection sensitivity of the high energy X-rays of around 30 keV was enhanced by about two orders of magnitude than that by the pure-Si detector. A pair of small permanent magnet was used to sweep away the back-scattered protons from the detector. With this magnet system, the background level in the spectrum of the pure-Si detector was significantly reduced.  相似文献   

20.
Peltier cooled CdTe detectors have good efficiency beyond the range of energies normally covered by Si(Li) detectors, the most common detectors in PIXE applications. An important advantage of CdTe detectors is the possibility of studying K X-rays lines instead the L X-rays lines in various cases since CdTe detectors present an energy efficiency plateau reaching 70 keV or more. The ITN CdTe useful energy range starts at K-Kα (3.312 keV) and goes up to 120 keV, just above the energy of the lowest γ-ray of the 19F(p, p’γ)19F reaction. In the new ITN HRHE-PIXE line, a CdTe detector is associated to a POLARIS microcalorimeter X-ray detector built by Vericold Technologies GmbH (an Oxford Instruments Group Company). The ITN POLARIS has a resolution of 15 eV at 1.486 keV (Al-Kα) and 24 eV at 10.550 keV (Pb-Lα1). In the present work, a TbCoFe thin film deposited on a Si substrate was analysed at the HRHE-PIXE system. The good efficiency of the CdTe detector at 45 keV (Tb-Kα), and the excellent resolution of POLARIS microcalorimeter at 6.403 keV (Fe-Kα), are presented and the new possibilities open to the IBA analysis of systems with traditionally overlapping X-rays and near mass elements are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号