首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 533 毫秒
1.
Effects of different dietary fats on plasma, hepatic and biliary lipids were determined in male golden Syrian hamsters (Mesocricetus auratus) fed on purified diets for 7 weeks. Diets were made by blending different fats containing characteristic fatty acids: butter (14:0 + 16:0), palm stearin (16:0), coconut oil (12:0 + 14:0), rapeseed oil (18:1), olive oil (18:1) and sunflowerseed oil (18:2). In all diets except the sunflowerseed oil diet dietary 18:2 was held constant at 2% energy. Total fat supplied 12% of energy and cholesterol was added at 4 g/kg diet. Plasma cholesterol and triacyglycerol concentrations were increased by dietary cholesterol. After 7 weeks, plasma cholesterol concentrations were highest with the palm stearin, coconut oil and olive oil diets (8.9, 8.9 and 9.2 mmol/l) and lowest with the rapeseed oil and sunflowerseed oil diets (6.7 and 5.5 mmol/l) while the butter diet was intermediate (8.5 mmol/l). Hepatic cholesterol concentration was highest in hamsters fed on the olive oil diet and lowest with the palm stearin diet (228 v. 144 mumol/g liver). Biliary lipids, lithogenic index and bile acid profile of the gall-bladder bile did not differ significantly among the six diets. Although the gallstone incidence was generally low in this study, three out of 10 hamsters fed on the palm stearin diet developed cholesterol gallstones. In contrast, no cholesterol gallstones were found with the other diets. Rapeseed and sunflowerseed oils caused the lowest plasma cholesterol and triacyglycerol concentrations whereas olive oil failed to demonstrate a cholesterol-lowering effect compared with diets rich in saturated fatty acids. Since 18:2 was kept constant at 2% of energy in all diets, the different responses to rapeseed and olive oils could possibly be attributed to their different contents of 16:0 (5.6% v. 12.8% respectively). Other possible explanations are discussed.  相似文献   

2.
The effects of dietary fat saturation and saturated fatty acid composition on plasma lipoprotein concentrations and hepatic cholesterol metabolism were investigated in guinea pigs. Animals were fed semipurified diets containing 15 g fat/100 g diet, as palm kernel, palm oil, beef tallow, lard, olive oil or corn oil. Plasma lipoprotein concentrations were significantly altered by the type of dietary fat. The LDL cholesterol concentration was highest in animals fed the diet with palm kernel and lowest in animals fed the diet with corn oil, whereas HDL cholesterol was lowest in beef tallow-fed guinea pigs (P < 0.01). Hepatic cholesteryl ester concentrations were 100% higher in animals fed diets containing polyunsaturated corn oil and monounsaturated olive oil compared with animals fed any of the saturated fat diets (P < 0.01). Hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity varied in the different dietary fat groups independent of hepatic cholesterol pools or plasma LDL concentrations. In contrast, hepatic acyl-CoA: cholesterol acyltransferase (ACAT) activity was significantly correlated with plasma LDL cholesterol across all dietary groups (r = 0.63, P < 0.001). These data demonstrate that regulation of hepatic HMG-CoA reductase activity is relatively independent of changes in plasma lipoprotein levels, whereas hepatic ACAT activity exhibits a positive correlation with plasma LDL cholesterol concentrations.  相似文献   

3.
The effect of dietary fats on the chemical composition and enzyme activities has been studied in intestinal brush border membranes (BBM) or rats. Animals were given commercial rat pellet diet (RP) or semisynthetic diet rich in either saturated [coconut oil (CCO))] or polyunsaturated [n-6, corn oil (CO) or n-3, fish oil (FO)] fat at the 10% level for 5 weeks. The membrane cholesterol/phospholipid ratio was augmented in CO- or RP-fed rats. There was an increase in level of saturated fatty acids in BBM from CCO- or FO-fed animals. n-3 polyunsaturated fatty acid content was raised in FO-fed rats, while the proportion of linoleic acid and arachidonic acid was enhanced in animals given a CO diet. Membrane fluidity was in the order of CCO < RP = CO < FO. The membrane hexose content was high (p < 0.05) in the CCO group. Hexosamines were elevated (p < 0.05) in CCO- or FO-fed rat brush borders. Membrane fucose was unaltered, while sialic acid content was elevated in CO- (p < 0.05) and FO- (p < 0.01) fed vs. CCO-fed rats. Lectin binding to brush borders corroborated these findings. The activities of alkaline phosphatase, sucrase and lactase were augmented (p < 0.001) in CCO-fed animals. Leucine-aminopeptidase and sucrase activities were depressed by FO feeding. The activities of PNP-beta-glycosidases were the highest in FO-fed rats. These results indicate that dietary fat quality markedly affects microvillus membrane lipid composition, glycosylation and enzyme functions in rat intestine.  相似文献   

4.
Thirty-six young male Syrian hamsters were fed with test diets containing coconut oil, soybean oil or fish oil with and without 0.5% cholesterol for 6 weeks. Without dietary cholesterol supplementation, animals on the fish oil diet had significantly lower plasma total triglyceride (TG) and total cholesterol than those on the coconut oil or soybean oil diet. The decrease of TG was seen mainly in the very low density lipoprotein (VLDL) fraction. The degree of decrease in cholesterol was similar in all of the lipoprotein fractions. With 0.5% dietary cholesterol supplementation, there was no significant difference in plasma TG level among the three dietary groups. However, the fish oil group had significantly higher plasma cholesterol than the coconut oil and soybean oil groups. The increase of cholesterol was mainly in the VLDL and low density lipoprotein (LDL) fractions. In contrast to the plasma cholesterol level, the hepatic cholesteryl ester content was significantly lower in the cholesterol-supplemented fish oil group than in the coconut oil and soybean oil counterparts. The cholesterol-supplemented fish oil group showed higher liver microsomal acyl-coenzyme A:cholesterol acyltransferase activity than the other two groups, while there was no significant difference in the excretion of fecal neutral and acidic sterols among the three dietary groups.  相似文献   

5.
The effects of spinach leaf protein concentrate (SPPC) on serum and liver lipid concentrations and on serum free amino acid concentrations were examined in rats fed a cholesterol-free diet containing 2 and 10% fats. The serum total cholesterol, triacylglycerol and phospholipid concentrations in the rats fed an SPPC diet containing 2% corn oil were significantly lower than those of the rats fed a corresponding casein diet. When 10% corn oil or lard was used, the serum cholesterol-lowering effect of the SPPC became insignificant, but the serum and liver triacylglycerol concentrations were kept at significantly lower levels. Both the amounts of fecal neutral steroids and bile acids were significantly higher in the rats fed the SPPC than those of the casein-fed rats. The concentrations of serum threonine, serine, glutamine, glycine, cystine, and isoleucine were significantly higher in the rats fed the SPPC diet containing 2% corn oil compared with those of the control rats, but when the dietary fat was raised to 10%, only glycine showed a higher serum concentration. These results indicate that the SPPC has a stronger cholesterol-lowering effect at a lower dietary fat level, 2%, and the activity is partly due to the inhibition of intestinal absorption of cholesterol and bile acid, and partly due to an increase in the concentration of some of the serum amino acids.  相似文献   

6.
We investigated modes whereby stearic acid (18:0) exerts a neutral or cholesterol-lowering effect using dietary fats which provided graded levels of 18:0 and distinct triacylglycerol (TAG) profiles. Male Sprague-Dawley rats (150-175 g) were fed diets containing 0.2% cholesterol and 16% fat from corn oil, or from 1% corn oil plus 15% lard (13.2% 18:0), beef tallow (19.2% 18:0) or cocoa butter (34.7% 18:0) for 3 wk, and then killed in a fasted or fed state. Chylomicron (CM) fatty acid profiles suggested reduced absorption of 18:0 with greater 18:0 intake. CM TAG profiles indicated a reduction or loss of two TAG species compared to the TAG profiles of the stearate-rich diets: 1-palmitoyl-2-oleoyl-3-stearoyl glycerol (POS) and 1,3-distearoyl-2-oleoyl glycerol (SOS). Hepatic total cholesterol concentrations were 54-77% lower (P < 0.01) in the cocoa butter-fed than the lard-and beef tallow-fed groups. The cocoa butter group showed a significantly lower ratio of high-density lipoprotein esterified/free cholesterol than all other groups. Hepatic stearoyl-CoA and oleoyl-CoA concentrations, the substrate and product for hepatic delta 9 desaturase, were not significantly different for corn oil-fed and cocoa butter-fed groups in spite of a large difference in 18:0 intake. These data suggest that the neutral or cholesterol-lowering effect of 18:0 is not due to hepatic conversion of stearic to oleic acid, and that POS and SOS are poorly absorbed from stearate-rich dietary fats.  相似文献   

7.
Diets rich in polyunsaturated fatty acids (PUFA) are well known to suppress hepatic lipogenic enzymes compared to fat-free diets or diets rich in saturated fatty acids. However, the mechanism underlying suppression of lipogenic enzymes is not quite clear. The present study was undertaken to investigate whether lipid peroxidation products are involved in suppression of lipogenic enzymes. Therefore, an experiment with growing male rats assigned to six groups over a period of 40 d was carried out. Rats received semisynthetic diets containing 9.5% coconut oil and 0.5% fresh soybean oil (coconut oil diet, peroxide value 5.1 meq O2/kg oil), 10% fresh soybean oil (fresh soybean oil diet, peroxide value 9.5 meq O2/kg oil), or 10% thermally treated soybean oil (oxidized soybean oil diet, peroxide value 74 meq O2/kg oil). To modify the antioxidant state of the rats, we varied the vitamin E supply (11 and 511 mg alpha-tocopherol equivalents per kg of diet) according to a bi-factorial design. Food intake and body weight gain were not influenced by dietary fat and vitamin E supply. Activities of hepatic lipogenic enzymes were markedly influenced by the dietary fat. Feeding either fresh or oxidized soybean oil diets markedly reduced activities of fatty acid synthase, (FAS), acetyl CoA-carboxylase, (AcCX), glucose-6-phosphate dehydrogenase, (G6PDH), 6-phosphogluconate dehydrogenase, and ATP citrate lyase (ACL) relative to feeding the coconut oil diet. Moreover, feeding oxidized soybean oil slightly, but significantly, lowered activities of FAS, AcCX, and ACL compared to feeding fresh soybean oil. Activities of hepatic lipogenic enzymes were reflected by concentrations of triglycerides in liver and plasma. Rats fed the coconut oil diet had markedly higher triglyceride concentrations in liver and plasma than rats consuming fresh or oxidized soybean oil diets, and rats fed oxidized soybean oil had lower concentrations than rats fed fresh soybean oil. The vitamin E supply of the rats markedly influenced concentrations of thiobarbituric acid-reactive substances in liver, but it did not influence activities of hepatic lipogenic enzymes. Because the vitamin E supply had no effect, and ingestion of an oxidized oil had only a minor effect, on activities of hepatic lipogenic enzymes, it is strongly suggested that neither exogenous nor endogenous lipid peroxidation products play a significant role in the suppression of hepatic lipogenic enzymes by diets rich in PUFA. Therefore, we assumed that dietary PUFA themselves are involved in regulation of hepatic lipogenic enzymes. Nevertheless, the study shows that ingestion of oxidized oils, regardless of the vitamin E supply, also affects hepatic lipogenesis, and hence influences triglyceride levels in liver and plasma.  相似文献   

8.
The effects of dietary soybean protein on lipogenic enzyme gene expression in livers of genetically fatty rats (Wistar fatty) have been investigated. When Wistar fatty rats and their lean littermates (7-8-wk old) were fed a casein or soybean protein isolate diet containing hydrogenated fat (4% hydrogenated fat plus 1% corn oil) or corn oil (5%) for 3 wk, the hepatic messenger RNA concentrations and activities of lipogenic enzymes were significantly lower in rats fed soybean protein than in those fed casein, regardless of genotype or dietary fat. The conversion rates of thyroxine to triiodothyronine by liver microsomes and plasma triiodothyronine concentrations were lower in the fatty rats than in the lean rats and were significantly greater in rats fed soybean protein than in those fed casein. Conversely, plasma and liver triacylglycerol concentrations were lower in soybean protein-fed fatty and lean rats than in those fed casein. The body weight was less in the fatty rats fed soybean protein than in those fed casein after 3 wk of feeding. Moreover, dietary polyunsaturated fatty acids suppressed lipogenic enzyme gene expression in the lean rats but did not in the fatty rats. Dietary soybean protein appeared to be useful for the reduction of obesity.  相似文献   

9.
This study is concerned with the effect of two carbohydrates, cane-sugar and corn starch, at four different levels in the presence of two dietary fats, on the serum and the tissue lipids (cholesterol, phospholipid and fatty acid patterns). Keeping the dietary fats (coconut safflower seed oil) at 20% level, diets containing (a) startch (54%) + cane sugar (0%), (b) starch (44%) + cane sugar 10%), (c) starch (10%) + cane sugar (44%) and (d) only cane sugar (54%) were administered to rats for 8 weeks. The lipid levels were determined at the end of the feeding period. The beneficial effect of the unsaturated fat in lowering the serum cholesterol level is nullified by an excess of cane sugar in the diet. In liver, there is an increase of 40-50% of cholesterol, as the cane sugar level in the diet is raised, irrespective of the type of dietary fat. The fatty acid pattern of the serum and tissue lipids is influenced by dietary fats as well as carbohydrates.  相似文献   

10.
Studies were performed to determine whether feeding diets with differing fatty acid content and composition had an influence on systolic blood pressure in the rat. Weanling male rats were fed standard laboratory chow (2.9% fat in total), or synthetic diets (10% fat in total) containing fish oil, butter, coconut oil or corn oil, for 5 weeks. Coconut oil and butter diets were rich in saturated fatty acids, whilst fish oil and corn oil were rich in the n-3 and n-6 unsaturated fatty acids respectively. Systolic blood pressure was measured using an indirect tail-cuff method at the end of the feeding period, and compared to a group of weanling rats. Feeding the different diets did not alter the growth of the rats, so all animals were of similar weights at the time of blood pressure determination. Control (chow fed) animals, at nine weeks of age, had higher systolic blood pressures than the weanling, baseline control group. Fish oil fed rats had similar pressures to the chow fed rats. Corn oil fed rats had significantly lower systolic pressures than the controls. The rats led the diets rich in saturated fatty acids (butter and coconut oil) had significantly higher blood pressures than all other groups. Systolic blood pressure was found to be significantly related to the dietary intakes of saturated and unsaturated fatty acids. The dietary intake of linoleic acid was significantly higher in corn oil fed rats than in other groups. Systolic blood pressure was inversely related to linoleic acid intake. Feeding a diet rich in saturated fatty acids significantly increases blood pressure in the rat. A high intake of n-6 fatty acids, and in particular linoleic acid, appears to have a hypotensive effect. Prenatal exposure of the rats to a maternal low protein diet, abolished the hypertensive effects of the coconut oil diet and the hypotensive effect of the corn oil diet upon young adult females. The intrauterine environment may, therefore, be an important determinant of the effects of these fatty acids on blood pressure in later life.  相似文献   

11.
We investigated how dietary fats and oils of different fatty acid composition influence the seasonal change of body mass, fur colour, testes size and torpor in Djungarian hamsters, Phodopus sungorus, maintained from autumn to winter under different photoperiods and temperature regimes. Dietary fatty acids influenced the occurrence of spontaneous torpor (food and water ad libitum) in P. sungorus maintained at 18 degrees C under natural and artificial short photoperiods. Torpor was most pronounced in individuals on a diet containing 10% safflower oil (rich in polyunsaturated fatty acids), intermediate in individuals on a diet containing 10% olive oil (rich in monounsaturated fatty acids) and least pronounced in individuals on a diet containing 10% coconut fat (rich in saturated fatty acids). Torpor in P. sungorus on chow containing no added fat or oil was intermediate between those on coconut fat and olive oil. Dietary fatty acids had little effect on torpor in animals maintained at 23 degrees C. Body mass, fur colour and testes size were also little affected by dietary fatty acids. The fatty acid composition of brown fat from hamsters maintained at 18 degrees C and under natural photoperiod strongly reflected that of the dietary fatty acids. Our study suggests that the seasonal change of body mass, fur colour and testes size are not significantly affected by dietary fatty acids. However, dietary fats influence the occurrence of torpor in individuals maintained at low temperatures and that have been photoperiodically primed for the display of torpor.  相似文献   

12.
We investigated the effects of type of dietary fat and phenobarbital on gamma-glutamyl transpeptidase-positive foci development. Four groups of six female Sprague-Dawley rats were initiated with diethylnitrosamine (15 mg/kg) at 24 hours of age. After weaning, they were fed nutritionally complete semipurified diets containing 15% corn oil or 5% corn oil + 10% fish oil and supplemented with 5,000 ppm vitamin E with or without phenobarbital (500 ppm) for three months. Dietary fish oil significantly increased hepatic phospholipid eicosapentaenoate and docosahexaenoate concentrations and decreased arachidonate concentration compared with 15% corn oil (p < 0.05). Corn oil (15%) significantly increased hepatic prostaglandin F2 alpha concentration compared with 10% fish oil (p < 0.05). Phenobarbital significantly stimulated glutathione S-transferase activity in both dietary fat groups (p < 0.05). In the absence of phenobarbital, type of dietary fat showed no effect on hepatic gamma-glutamyl transpeptidase-positive foci development. However, in the presence of phenobarbital, 15% corn oil significantly enhanced gamma-glutamyl transpeptidase-positive foci development compared with 10% fish oil (p < 0.05). Phenobarbital showed a strong tumor-promoting action in both dietary groups. In conclusion, there was an interaction between type of dietary fat and phenobarbital on gamma-glutamyl transpeptidase-positive foci development during hepatocarcinogenesis in rats.  相似文献   

13.
In the rat, both fish oil diet and thyroid hormone replacement are reported to augment bile cholesterol secretion out of proportion to bile flow or secretion of other bile lipids. We sought common mechanisms for these effects and evaluated the role of phospholipid fatty acid composition in the process. Methimazole-treated hypothyroid rats were fed low-fat chow or chow supplemented with 10% corn oil or fish oil, and were studied before and after thyroid hormone treatment. Serum, hepatic, and bile lipids were measured, phospholipid fatty acid composition determined, and hepatic 3-hydroxy-3-methylglutaryl CoA reductase activity assayed. Fish oil diet stimulated cholesterol secretion into bile only after thyroid hormone was given, and this action was synergistic with that of thyroid hormone. Reduced serum cholesterol in fish oil-treated rats was associated with increased biliary cholesterol secretion and diminished hepatic cholesterol content. This suggests that augmented biliary cholesterol secretion may contribute to the fish oil-induced reduction of serum cholesterol. No definite relationship between hepatic or biliary phospholipid fatty acid composition and biliary secretion was apparent, although high bile cholesterol secretion was associated with a low percentage of hepatic and bile phospholipid linoleic acid.  相似文献   

14.
The effects of feeding a 1% corn oil-9% menhaden oil or beef tallow diet on the early phase of diabetic nephropathy in BHE/cdb rats was studied. The diet groups were subdivided into rats with or without impaired glucose tolerance. Those fed menhaden oil had renal hypertrophy, mild albuminuria, decreased creatinine clearance, increased urea clearance, and more severe lesion scores than rats fed beef tallow. No differences in glomerular filtration rate, Na+, K+-ATPase activity, sorbitol dehydrogenase, or inositol 1, 4, 5-phosphate were observed. Beef tallow-fed rats had higher serum triglyceride levels and renal cholesterol levels. Renal and hepatic fatty acid profiles reflected the fatty acid profile of the dietary fat. These results suggest that beef tallow conferred a protective effect on the renal tissues of these diabetes-prone rats.  相似文献   

15.
It has been reported that both n-3 and n-6 octadecatrienoic acids can increase hepatic fatty acid oxidation activity. It remains unclear, however, whether different enzymes in fatty acid oxidation show a similar response to n-3 and n-6 octadecatrienoic acids. The activity of hepatic fatty acid oxidation enzymes in rats fed an oil mixture rich in alpha-linolenic acid (18:3n-3) and borage oil rich in gamma-linolenic acid (18:3n-6) was therefore compared to that in rats fed an oil mixture rich in linoleic acid (18:2n-6) and a saturated fat (palm oil) in this study. Linseed oil served as the source of 18:3n-3 for the oil mixture rich in this octadecatrienoic acid and contained 30.6% 18:3n-3 but not 18:3n-6. Borage oil contained 25.7% 18:3n-6 and 4.5% 18:3n-3. Groups of seven rats each were fed diets containing 15% various fats for 15 d. The oxidation rate of palmitoyl-CoA in the peroxisomes was higher in rats fed a fat mixture rich in 18:3n-3 (3.03 nmol/min/mg protein) and borage oil (2.89 nmol/min/mg protein) than in rats fed palm oil (2.08 nmol/min/mg protein) and a fat mixture rich in 18:2n-6 (2.15 nmol/min/mg protein). The mitochondrial palmitoyl-CoA oxidation rate was highest in rats fed a fat mixture rich in 18:3n-3 (1.93 nmol/min/mg protein), but no significant differences in this parameter were seen among the other groups (1.25-1.46 nmol/min/mg protein). Compared to palm oil and fat mixtures rich in 18:2n-6, a fat mixture rich in 18:3n-3 and borage oil significantly increased the hepatic activity of carnitine palmitoyltransferase and acyl-CoA oxidase. Compared to palm oil and a fat mixture rich in 18:2n-6, a fat mixture rich in 18:3n-3, but not fats rich in 18:3n-6, significantly decreased 3-hydroxyacyl-CoA dehydrogenase activity. Compared to palm oil and a fat mixture rich in 18:2n-6, borage oil profoundly decreased mitochondrial acyl-CoA dehydrogenase activity, but a fat mixture rich in 18:3n-3 increased it. 2,4-Dienoyl-CoA reductase activity was significantly lower in rats fed palm oil than in other groups. Compared to other fats, borage oil significantly increased delt3,delta2-enoyl-CoA isomerase activity. Activity was also significantly higher in rats fed 18:2n-6 oil than in those fed palm oil. It was confirmed that both dietary 18:3n-6 and 18:3n-3 increased fatty acid oxidation activity in the liver. These two dietary octadecatrienoic acids differ considerably, however, in how they affect individual fatty acid oxidation enzymes.  相似文献   

16.
The present study was conducted to determine the effects of dietary fatty acids on hepatic LDL receptor (LDLr) protein abundance and mRNA levels. Sixty pigs were randomized into 10 groups and fed corn-soybean meal diets containing three cholesterol levels (0.25%, 0.5%, and 1.0%, w/w) with no added fat, or fats rich (30% of calories) in palmitic acid or linoleic acid. A control group was fed the base diet with no added fat. After 30 days, plasma LDL-cholesterol (LDL-C) levels increased as the dietary cholesterol increased (P < 0.05); however, there was no significant effect of either fatty acid. Dietary fatty acids, however, had distinctly different effects on hepatic LDLr protein (analyzed by ELISA) and mRNA (analyzed by Northern blot) abundance. When pigs consumed diets containing 0.25% cholesterol, linoleic acid increased hepatic LDLr protein 40% whereas palmitic acid reduced it 40% (P < 0.05). These changes in LDLr protein abundance were accompanied by parallel changes in hepatic LDLr mRNA; linoleic acid increased LDLr mRNA 2-fold (P < 0.01), whereas palmitic acid decreased it 60% (P < 0.01). The differential effects of fatty acids on LDLr expression were only observed at 0.25% cholesterol, suggesting that higher intakes of cholesterol have a dominant and repressive effect on regulation of LDLr expression. Cholesterol intake increased hepatic total cholesterol levels (P < 0.01) while dietary fatty acids had no effect on hepatic sterols. In summary, our results indicate that dietary linoleic acid and palmitic acid have markedly different effects on hepatic LDLr protein abundance that are mediated by differential effects on LDLr mRNA and protein levels. Further studies are needed to fully elucidate the molecular mechanisms by which fatty acids regulate LDLr mRNA and protein levels.  相似文献   

17.
These studies were designed to measure the impact of different fish oil sources of dietary (n-3) polyunsaturated fatty acid on the alpha-tocopherol content of rat immune cells. In the first experiment, rats were fed diets containing either lard, corn oil, menhaden fish oil or cod liver oil. In the second study, sardine fish oil replaced corn oil. Dietary fat source did not significantly influence body weights or the yield of immune cells in either study. In both studies, plasma and liver alpha-tocopherol concentrations were significantly lower in (n-3) polyunsaturated fatty acid-fed rats than in rats fed lard. In the first study, immune cell alpha-tocopherol concentrations followed those observed in the plasma and liver. These concentrations closely paralleled the amount of RRR-alpha-tocopheryl acetate added to diets and not the total vitamin E present, which was the same for all treatment groups. However, in the second study, alpha-tocopherol concentration of immune cells was not significantly different among rats fed lard, menhaden fish oil, and sardine fish oil. In that study both the amount and form of vitamin E were carefully balanced across dietary treatment groups. In conclusion, despite having similar amounts of (n-3) polyunsaturated fatty acids, two out of three fish oils tested did not lower immune cell alpha-tocopherol concentration even in the face of significantly reduced plasma and liver alpha-tocopherol concentrations.  相似文献   

18.
STUDY OBJECTIVE: A validation study was conducted first to test assumptions about the effect of saturated and unsaturated dietary fat supplements. The second study was conducted to determine the effect on blood cholesterol levels of saturated and unsaturated fat supplements in patients who followed a low-fat diet and were administered lovastatin. DESIGN: Randomized, crossover design, with three periods in the first study and four in the second study, each lasting 6 weeks. SETTING: Cholesterol Research Center. PATIENTS: The first study evaluated adults with total cholesterol levels between 200 and 280 mg/dl (5.172 and 7.241 mmol/L). The second study included adults with low-density lipoprotein (LDL) cholesterol levels above 160 mg/dl (4.138 mmol/L). INTERVENTIONS: Fat supplements with either coconut or canola oil were delivered to patients in oatmeal-raisin cookies. MEASUREMENTS AND MAIN RESULTS: In the validation study, patients' mean prerandomization total cholesterol level of 222 mg/dl was reduced to 213 mg/dl with canola oil and increased to 233 mg/dl with coconut oil cookies (p = 0.0038). In the second study the mean prerandomization total cholesterol level of 214 mg/dl was decreased to 199 mg/dl with canola oil and to 208 mg/dl with coconut oil cookies (p = 0.2342). The LDL cholesterol levels changed in a similar fashion in both studies. CONCLUSIONS: Changes in total and LDL cholesterol levels in the validation study were expected based on established effects of saturated and unsaturated fatty acids, but changes in these levels in lovastatin-cookie study were not expected. They could have occurred because lovastatin reversed the effect of saturated fats and enhanced the effect of unsaturated fats. Alternatively, they may have been due to enhanced bioavailability of lovastatin when administered with a high-fat diet. These findings must be confirmed.  相似文献   

19.
We have previously observed changes in colon cell proliferation in growing rats fed different levels of dietary fat as beef tallow or corn oil. Here we measured cellular proliferation at 18 and 30 weeks in the colon of rats fed beef tallow or corn oil and treated with the chemical carcinogen azoxymethane. Additionally, we assessed colon cell membrane lipid composition after 18 weeks on the defined diets and tumor incidence at 30 weeks. Dietary fat type and quantity significantly affected colon cell proliferation. Membrane phospholipids and free fatty acids were significantly affected by fat type. Tumor incidence was not affected by diet type. We conclude that dietary fat induces changes in cell membrane lipid composition and proliferation in the colon and these changes may be related to the development of tumors.  相似文献   

20.
Two experiments with sows were performed to investigate the effect of isoenergetic replacement of starch by fish oil or olive oil on concentrations of lipids in plasma and lipoproteins. The first experiment was based on a cross-over design with three periods, each lasting 16 days. Each sow was fed during one of the periods a basal ration with isoenergetic addition of (1) starch (495 g/d), (2) olive oil (221 g/d), or (3) fish oil (223 g/d) based on energetic requirement for maintainance. The second experiment was based on a cross-over design with eight periods, each lasting 16 days. In the first and in the last periods, each sow was fed the basal ration. In the other six periods, each sow was fed the basal ration with addition of two different amounts of (1) starch (284/568 g/d), (2) olive oil (140/281 g/d), or (3) fish oil (141/282 g/d). The two different amounts of addition were selected to exceed the energetic requirement for maintainance by 25% or 50%. In both experiments blood samples were taken before each change of the ration. In both experiments olive oil elevated the concentration of cholesterol in plasma in comparison with starch. This elevation was due to a large elevation in high-density lipoproteins (HDL), and a slight elevation in low-density lipoproteins (LDL) and very-low density lipoproteins (VLDL). The ratio between HDL and LDL cholesterol was increased by feeding olive oil. The effect of olive oil on concentrations of cholesterol in plasma and lipoproteins was dose-dependent. In both experiments none of the two dietary oils significantly changed concentrations of triglycerides in plasma and lipoproteins. Concentrations of phospholipids in plasma, HDL, and LDL were elevated by olive oil. In both experiments addition of fish oil elevated concentration of cholesterol in plasma due to elevated cholesterol concentration in LDL. Concentration of HDL cholesterol was not changed by fish oil. Thus, the ratio between HDL cholesterol and LDL cholesterol was lowered by fish oil. The effect of fish oil on concentration of cholesterol in plasma and lipoproteins was also dose-dependent. Fish oil had no significant effect on phospholipid concentrations in plasma and lipoproteins. In conclusion, in the present experiment olive oil caused antiatherogenic changes of the lipoprotein profile, whereas fish oil caused proatherogenic changes of the lipoprotein profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号