首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Basalt-inhabiting bacteria isolated from polluted basalts have been demonstrated to be able to tolerate moderate to high concentrations of chromium oxyanions such as chromate. Previous results have shown that macromolecules outside the cell wall of bacteria may play an important role in this survival ability. In this paper, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were applied to study the chromate-induced morphological changes in chromate-resistant basalt-inhabiting Arthrobacter K-2 and K-4, which were isolated from the Republic of Georgia. The surfaces of both strains changed in the presence of chromate. TEM thin sections show that chromate stimulates the appearance of bacteria capsular polysaccharide outside the cell wall, although the chromate concentration does not have a strong effect on the capsular thickness. These results, in conjunction with those reported earlier, provide direct evidence to show that capsular polysaccharides of the bacteria play very important role for the reduction and localization of chromate.  相似文献   

2.
This paper compared the effectiveness of four organic materials for decreasing the amounts of soil extractable Cr(VI) in Cr(VI)-contaminated soils using the DOWEX M4195 resin-extraction method. Organic matters were added into Cr(VI)-spiked soils [500 mg Cr(VI)(kgsoil)(-1)] in the form of sugarcane dregs compost (SCDC), cattle-dung compost (CDC), soybean meal (SBM) and rice bran (RB), in the amounts of 0, 1%, and 2% by dry weight, respectively. The results indicated that adding only 1% organic matter to the studied soils could effectively decrease the amount of soil resin-extractable Cr(VI) after 12 days of incubation. The decrease of resin-extractable Cr(VI) by organic materials was mainly the result from the reduction of Cr(VI) to Cr(III) supported by the XANES spectroscopy. Among the four tested organic materials, SBM and RB had higher effectiveness in decreasing soil resin-extractable Cr(VI) than CDC and SCDC. This result may be due to the fact that SBM and RB have more dissolved organic carbon (DOC) and protein than CDC and SCDC. Therefore, it was concluded that the contents of DOC and protein are the main factors that determine the effectiveness of organic materials for decreasing the amounts of soil available Cr(VI) in Cr(VI)-contaminated soils.  相似文献   

3.
The aim of this study is to prepare ion-imprinted polymers, which can be used for the selective removal of Cr(VI) anions from aqueous media. 4-Vinyl pyridine (4-VP) was used as functional monomer. The Cr(VI)-imprinted poly(4-vinyl pyridine-co-2-hydroxyethyl methacrylate), poly(VP-HEMA), particles were prepared by bulk polymerization. The Cr(VI)-imprinted polymer particles were grained from the bulk polymer, and the template ions (i.e., Cr(VI)) were removed using thiourea (0.5%, v/v) in 0.5M HCl. The Cr(VI)-imprinted polymer contained 21.4 μmol 4-VP/g polymers. The specific surface area of the IIP2 particles was found to be 34.5m(2)/g (size range of 75-150 μm), and the swelling ratio was about to 108%. The effect of initial concentration of Cr(VI) anions, the adsorption rate and the pH of the medium on adsorption capacity of Cr(VI)-imprinting polymer were studied. The maximum experimental adsorption capacity was 3.31 mmol Cr(VI)/g polymer. Under competitive condition, the adsorption capacity of Cr(VI)-imprinted particles for Cr(VI) is 13.8 and 11.7 folds greater than that of the Cr(III) and Ni(II) ions, respectively. The first- and second order kinetics models were estimated on the basis of comparative analysis of the corresponding rate parameters, equilibrium capacity and correlation coefficients. The Langmuir adsorption isotherm model was well described the Cr(VI)-imprinted system and the maximum adsorption capacity (Q(max)) was found to be 3.42 mmol/g. Moreover, the reusability of the poly(VP-HEMA) particles was tested for several times and no significant loss in adsorption capacity was observed.  相似文献   

4.
Bioremediation of Cr(VI) in contaminated soils   总被引:5,自引:0,他引:5  
Ex situ treatment of hexavalent chromium (Cr(VI)) contaminated soil using a bioreactor-biosorption system was evaluated as a novel remediation alternative. Leaching of Cr(VI) from the contaminated soil using various eluents showed that desorption was strongly affected by the solution pH. The leaching process was accelerated at alkaline conditions (pH 9). Though, desorption potential of ethylene diamine tetra acetic acid (EDTA) was the maximum among various eluents tried, molasses (5 g/L) could also elute 72% of Cr(VI). Cr(VI) reduction studies were carried out under aerobic and facultative anaerobic conditions using the bacterial isolates from contaminated soil. Cr(VI) reduction was moderately higher in aerobic conditions than in facultative anaerobic conditions. The effect of various electron donors on Cr(VI) reduction was also investigated. Among five electron donors screened, peptone (10 g/L) showed maximum Cr(VI) reduction followed by molasses (10 g/L). The time required for complete Cr(VI) reduction was increased with increase in the initial Cr(VI) concentration. However, specific Cr(VI) reduction was increased with increase in initial Cr(VI) concentration. Sulfates and nitrates did not compete with Cr(VI) for accepting the electrons. A bioreactor was developed for the detoxification of Cr(VI). Above 80% of Cr(VI) reduction was achieved in the bioreactor with an initial Cr(VI) concentration of 50 mg/L at an HRT of 8 h. An adsorption column was developed using Ganoderm lucidum (a wood rooting fungus) as the adsorbent for the removal of trivalent chromium (Cr(III)) and excess electron donor from the effluent of the bioreactor. The specific Cr(III) adsorption capacity of G. lucidum in the column was 576 mg/g. The new biosystem seems to be a promising alternative for the ex situ bioremediation of Cr(VI) contaminated soils.  相似文献   

5.
Hexavalent chromium Cr(VI) is a notorious ground water contaminant toxic to humans and animals. Assessment of an exposure risk for aquatic receptors necessitates frequent Cr(VI) concentration data from a range of surface and groundwater locations at Cr(VI) contamination sites. In this work, we demonstrate that enhanced ultraviolet-visible (UV-vis) spectroscopy using a liquid waveguide capillary cell (LWCC) offers an easy-to-use and economical methodology for the determination of chromate anion CrO(4)(2-) in Hanford natural waters without chemical pretreatment and generation of hazardous waste. Direct determination of CrO(4)(2-) in actual surface and ground water samples with the complexities of competing ions, dissolved organics, and other potential interfering agents was achieved by measuring the chromate optical absorbance at 372 nm. For a 100 cm path length LWCC, the detection limit for chromate was found to be as low as 0.073 ppb. A quantitative relationship between the intensity of the absorbance signal and water pH allowed for the straightforward calculation of total Cr(VI) content in natural water. The described method is applicable for in-field monitoring of Cr(VI) in environmental water samples at trace levels.  相似文献   

6.
Trivalent and hexavalent chromium continuous biosorption was studied using residual brewer Saccharomyces cerevisiae immobilized in volcanic rock. The columns used in the process had a diameter of 4.5 cm and a length of 140 cm, working at an inlet flow rate of 15 mL/min. Breakthrough curves were used to study the yeast biosorption behavior in the process. The saturation time (ts) was 21 and 45 h for Cr(III) and Cr(VI), respectively, and a breakthrough time (tb) of 4 h for Cr(III) and 5 h for Cr(VI). The uptake capacity of the biosorbent for Cr(III) and Cr(VI) were 48 and 60 mg/g, respectively. Two non-diffusional mathematical models with parameters t0 and sigma were used to adjust the experimental data obtained. Microsoft Excel tools were used for the mathematical solution of the two parameters used.  相似文献   

7.
Ferrous iron, Na(2)S(2)O(4), and a mixture of Fe(II) and Na(2)S(2)O(4) (4:1 mol/mol) were tested for their effectiveness for decreasing resin-extractable Cr(VI) in alkaline Cr(VI)-spiked soils. The results indicated that adding those reductants greatly decreased the amount of resin-extractable Cr(VI) when the application rate of reductants equaled the number of equivalents of dichromate added to the Cr(VI)-spiked soils. This was mainly as a result of the Cr(VI) reduction into Cr(III), as supported by the XANES spectra. Among the tested reductants, a mixture of Fe(II) and Na(2)S(2)O(4) was the most effective to decrease resin-extractable Cr(VI). The extent to which resin-extractable Cr(VI) and soil pH were decreased was affected by the pH of the reductants. Among the tested reductants at various pH, FeSO(4) at pH below 1 was the most effective in decreasing resin-extractable Cr(VI) in alkaline soils. However, the soil pH was the most decreased as well. On the other hand, the mixtures of ferrous iron and dithionite at a wide range of pH were all efficient (>70% efficiency) in decreasing resin-extractable Cr(VI). Moreover, the extent of the decrease in soil pH was much smaller than that by FeSO(4) (pH<1) alone, and thus the possibility of the Cr(III) hazard can be avoided.  相似文献   

8.
Hexavalent and trivalent chromium are released into the environment from a number of different industrial activities. It is known that Cr(VI) can be reduced and subsequently complexed by humic acids to produce Cr(III) humic acid complexes in the soil and aquatic environments. The metabolic fate of Cr(III) humic acid complexes and other Cr(III) organic complexes in mammalian systems is unknown. Therefore, Cr(III) picolinate was chosen as a model complex for Cr(III) humic acid complexes and other environmentally relevant Cr(III) complexes. Both human hepatocyte microsomes and primary cultures of chick hepatocytes were used to generate metabolites of Cr(III) picolinate. The results from both of these treatments show that a significant amount of Cr(III) is released (66 and 100%, respectively) and that N-1-methylpicotinamide is the primary organic metabolite from this compound. These data suggest that the populations of humans who are exposed Cr(III) picolinate or other environmentally relevant organic Cr(III) complexes, such as Cr(III) humic acid complexes, are potentially accumulating high levels of Cr(III) intracellularly. This intracellular accumulation of Cr(III) can result in the formation of covalent bonds between Cr(III) and DNA and/or other macromolecules, causing genotoxic effects. These data should be considered when assessing the risk of an area contaminated with chromium.  相似文献   

9.
A hydrous titanium(IV) oxide was prepared to study the adsorption characteristics and the separation of chromium species. Batch sorption studies have been carried out to determine the effect of pH on the sorption of Cr(III) and Cr(VI) on hydrous TiO2. An excellent separation efficiency of Cr(III) and Cr(VI) was obtained at pH 2. The adsorption percentage of Cr(VI) was above 99%, whereas that of the Cr(III) was less than 1% at this pH. The adsorption isotherm of Cr(VI) on hydrous TiO2 at pH 2 was in good agreement with the Langmuir isotherm. The maximum adsorption capacity of Cr(VI) on TiO2 was 5 mg g(-1). The rate of adsorption of Cr(VI) by hydrous TiO2 with average particle diameter 250 and 500 microm has been studied under particle diffusion controlled conditions. The diffusion coefficients of Cr(VI) for both hydrous TiO2 having average particle diameter of 250 and 500 microm was calculated at pH 2 as 3.84 x 10(-10) m2 s(-1) and 8.86 x 10(-10) m2 s(-1), respectively.  相似文献   

10.
11.
Cr(VI) reduction in aqueous solutions by siderite   总被引:1,自引:0,他引:1  
Hexavalent chromium is a common and toxic pollutant in soils and wastewaters. Reduction of the mobile Cr(VI) to less mobile and less toxic Cr(III) is a solution for decontamination of industrial effluents. In this study, the reduction of hexavalent chromium in aqueous solutions by siderite was investigated. The influences of amount of acid, contact time, siderite dosage, initial Cr(VI) concentration, temperature and particle size of siderite have been tested in batch runs. The process was found to be acid, temperature and concentration dependent. The amount of acid is the most effective parameter affecting the Cr(VI) reduction since carbonaceous gangue minerals consume acid by side reactions. The highest Cr(VI) reduction efficiency (100%) occurred in the 50 mg/l Cr(VI) solution containing two times acid with respect to stoichiometric amount of Cr(VI) and at the conditions of siderite dosage 20 g/l, contact time 120 min and temperature 25 degrees C. Reduction efficiency increased with increase in temperature and decrease in particle size. The reduction capacity of siderite was found to be 17 mg-Cr(VI)/g.  相似文献   

12.
A speciation procedure for chromium(III) and chromium(VI) in the environmental samples has been established in the presented work. The procedure presented based on quantitative biosorption of chromium(III) on Bacillus sphaericus loaded Diaion SP-850 at pH 5. The Cr(VI) recoveries at pH 5 were below 5% on the biosorbent. After reduction of Cr(VI) by concentrated H(2)SO(4) and ethanol, the system was applied to the total chromium. Cr(VI) was calculated as the difference between the total chromium content and the Cr(III) content. Optimal analytical conditions including pH, amounts of biosorbent, etc. for Cr(III) recoveries were investigated. The influences of the some alkaline and earth alkaline ions and some transition metals on the recoveries were also investigated. The capacity of biosorbent for chromium(III) was 6.95 mgg(-1). The detection limit (3 sigma) of the reagent blank for chromium(III) was 0.50 microgL(-1). The procedure was successfully applied to the speciation of chromium(III) and chromium(VI) in natural water samples (R.S.D. lower than 5%, recoveries greater than 95%).  相似文献   

13.
Calculations show that oxidation of chromium oxide (Cr2O3) by oxygen and oxidation of chromium hydroxide (Cr(OH)3) by manganese dioxide (MnO2) are thermodynamically feasible in both aerobic and mildly anoxic environments. Experiments were carried out to determine the rate and extent of chromium oxidation under various conditions, i.e., when Cr2O3 was heated in the presence of oxygen, when Cr(OH)3 and MnO2 mixtures were suspended in aerobic or anoxic aqueous media at various pH values, when Cr(OH)3 and MnO2 mixtures interacted in moist aerobic conditions and when chromium assumed to be Cr(OH)3 and manganese assumed to be MnO2 interacted in the presence of competing electron donors/acceptors, as is the case in chromium-contaminated sludge. Results indicate that trivalent chromium in Cr2O3 could be readily converted to hexavalent chromium at a temperature range of 200-300 degrees C, with conversion rates of up to 50% in 12 h. In aqueous media, Cr(OH)3 was slowly converted to dissolved Cr(VI) in the presence of MnO2, both in aerobic and anoxic conditions, with conversion rates of up to 1% in 60 days. In moist aerobic conditions and in the presence of MnO2, Cr(OH)(3) slowly converted to hexavalent chromium, with up to 0.05% conversion observed in 90 days. Chromium oxidation also occurred in sludge samples, especially under aerobic conditions. However, such transformation was found to be transitory, with the Cr(VI) formed being ultimately reduced back to Cr(III) due to the presence of various reducing agents in the sludge. Nevertheless since up to 17% conversion of Cr(III) to Cr(VI) occurred in sludge under aerobic conditions by 30 days, there is real danger under field conditions of spreading Cr(VI) pollution due to possible intervening rainfall, runoff and percolation.  相似文献   

14.
Sludge, soil and leachate samples collected from a chromium-contaminated tannery waste dumping site in Kanpur, India, were found to contain considerable amounts of Cr(VI), despite the fresh tannery sludge containing little or no Cr(VI). Literature reports suggested that dry Cr(III) precipitates could be converted to Cr(VI) when heated in the presence of oxygen. Also, Cr(III) in aqueous phase could be oxidized through interaction with manganese dioxide (MnO2) surface to Cr(VI). Measurement of manganese in the sludge samples collected from the site showed concentrations up to 0.6 mg/g. Based on equilibrium calculations, it was determined that both dry phase Cr(III) oxidation by atmospheric oxygen and aqueous phase Cr(III) oxidation by MnO2 surface were thermodynamically feasible. It was further suggested that in aqueous phase, manganese may act effectively as an electron transporter between Cr(III) and dissolved oxygen during Cr(III) oxidation, leading to regeneration of MnO2 solid phase. Further, as dissolved Cr(III) is oxidized, dissolution of Cr(OH3) will take place to maintain the equilibrium between the dissolved and solid phases of Cr(III). In the pH range of 3-10, and at oxygen partial pressure (P(O2)) of 10(-6) atm or higher, equilibrium conditions stipulate nearly complete conversion of Cr(III) to Cr(VI). At P(O2) of 10(-20) atm or lower, very little Cr(VI) is expected to be present under equilibrium conditions. In the intermediate P(O2) regions, incomplete dissolution of the Cr(OH3) solid phase and only partial conversion of chromium from +3 to the +6 oxidation state is expected, especially at lower pH values.  相似文献   

15.
The mystery surrounding high concentrations of Cr(III) in plants has been uncovered. It is attributed to the presence of low molecular weight organic acids (LMWOA) in soil in which the plants are growing. Apart from that, the factors influencing solubility of Cr(VI) in soil have also been investigated. It was found that the solubility of Cr(VI) species is governed by the presence of CO3(2-) ions in a soil solution that resulted when atmospheric CO2 dissolves in soil-water. Concentrations of Cr(VI) and Cr(III) were determined in plants, collected on unpolluted soils in different geographical areas. It was found that the concentration of Cr(VI) in plants correlated with the soluble fraction of Cr(VI) in soil, while Cr(III) concentration in plants is limited by concentration LMWOA in soil. It can therefore be concluded that the high level of Cr(III) in plants is also due to the direct absorptions of the species from soil rich in organic acids.  相似文献   

16.
A speciation procedure for Cr(III) and Cr(VI) based on column solid phase extraction on Amberlite XAD-2010 and flame atomic absorption spectrometry combination. Cr(VI) was quantitatively recovered on Amberlite XAD-2010 resin at pH range of 2.0-3.0 as its diethyldithiocarbamate complex, while the recoveries of Cr(III) was below 5%. The influences of the various parameters including amounts of the reagents, eluent type and its volume, sample volume, etc., on the quantitative recoveries were examined. The interference of matrix and coexistent elements for method were studied. The detection limit (corresponding to three times the standard deviation of the blank) and the enrichment factor for Cr(VI) were found to be 1.28 microg/L and 25, respectively. To verify the accuracy of the method, drinking water certified reference material (CRM-TMDW-500) was analyzed and the results obtained were in good agreement with the certified value. The proposed method has been successfully applied to the speciation of Cr(III) and Cr(VI) in water samples and preconcentration of total chromium in environmental samples.  相似文献   

17.
In this study we present the cathodic Cr(VI) reduction using electrodissolution of iron anode. In batch experiments we tested four different cathodic materials; the best conditions were found when copper was used. It is observed that when more current is applied into the electrochemical cell faster reduction rates are achieved. Continuous experiments also reveal that Cr(VI) reduction could be done in a very efficient way. To confirm the experimental data, cyclic voltammetry was used and it was found that the cathodic Cr(VI) reduction is taking place.  相似文献   

18.
The objective of the present study is cost and benefit analysis of biological and chemical removal of hexavalent chromium [Cr(VI)] ions. Cost and benefit analysis were done with refer to two separate studies on removal of Cr(VI), one of heavy metals with a crucial role concerning increase in environmental pollution and disturbance of ecological balance, through biological adsorption and chemical ion-exchange. Methods of biological and chemical removal were compared with regard to their cost and percentage in chrome removal. According to the result of the comparison, cost per unit in chemical removal was calculated 0.24 euros and the ratio of chrome removal was 99.68%, whereas those of biological removal were 0.14 and 59.3% euros. Therefore, it was seen that cost per unit in chemical removal and chrome removal ratio were higher than those of biological removal method. In the current study where chrome removal is seen as immeasurable benefit in terms of human health and the environment, percentages of chrome removal were taken as measurable benefit and cost per unit of the chemicals as measurable cost.  相似文献   

19.
Fired brick clay is an excellent sorbent for the removal of heavy metal ions from waste water, owing to the availability of pores and interlayer spacing. Consequently, heat treatment of brick clay significantly affects the extent of interaction between the brick clay sorbent and adsorbates. The interaction between Cr(VI), available as Cr(2)O(7)(2-), and brick clay particles fired at temperatures between 200 °C and 600 °C follows pseudo second order kinetics, and the method of initial rates leads to the estimation of the average rate of the interaction process. Kinetics modeling suggests that the mass transfer of the interaction be mainly controlled by time-dependent intraparticle diffusion, as well as immobilization of Cr(VI) species within interlayer structure of the brick clay matrix and interparticle diffusion, both of which are time-independent.  相似文献   

20.
An optimized method for the simultaneous determination of Cr(III) and Cr(VI) in aqueous solutions using ion chromatography with chemiluminescence detection is described. Excellent resolution of the two chromium species was obtained using a single mixed-bed ion-exchange column with continuous elution. After postcolumn reduction of Cr(VI) to Cr(III), the light emitted during the Cr(III)-catalyzed oxidation of luminol with hydrogen peroxide was measured. Parameters affecting the postcolumn reactions such as reductant concentration, reductant mixing, point of luminol introduction, and luminol flow rate were optimized. The calibration curves in the range tested (0.01-50 μg L(-)(1)) were linear, and detection limits of 0.002 μg L(-)(1) for both Cr(III) and Cr(VI) were obtained. The results of the analyses of the water reference materials LGC CRM6010 and NIST SRM1643d with certified chromium values of 49 ± 4 and 18.53 ± 0.20 μg L(-)(1) and found to contain only Cr(III) were 49.2 ± 1.8 and 19.0 ± 1.5 μg L(-)(1), respectively. Values of 10.6 ± 0.5 and 10.1 ± 0.5 μg L(-)(1) were obtained when a simulated water sample containing 10 μg L(-)(1) Cr(III) and Cr(VI) was analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号