共查询到20条相似文献,搜索用时 15 毫秒
1.
Localization of O-glycosylation sites in peptides by electron capture dissociation in a Fourier transform mass spectrometer. 总被引:4,自引:0,他引:4
The novel technique electron capture dissociation (ECD) of electrospray generated [M + nH]n+ polypeptide cations produces rapid cleavage of the backbone NH-Ca bond to form c and z ions (in the modified notation of Roepstorff and Fohlman). The potential of the Fourier transform mass spectrometry equipped with ECD in structure analysis of O-glycosylated peptides in the 3 kDa range has been investigated. Totally, 85% of the available interresidue bonds were cleaved in five glycopeptides; more stable c ions accounted for 62% of the observed fragmentation. The c series provided direct evidence on the glycosylation sites in every case studied, with no glycan (GalNAc and dimannose) losses observed from these species. Less stable z ions supported the glycan site assignment, with minor glycan detachments. These losses, as well as the observed formation of even-electron z ions, are attributed to radical-site-initiated reactions. In favorable cases, complete sequence and glycan position information is obtained from a single-scan spectrum. The "mild" character of ECD supports the previously proposed non-ergodic (cleavage prior to energy randomization) mechanism, and the low internal energy increment of fragments. 相似文献
2.
Kleinnijenhuis AJ Duursma MC Breukink E Heeren RM Heck AJ 《Analytical chemistry》2003,75(13):3219-3225
Electron capture induced dissociation (ECD) and collisionally activated dissociation (CAD) experiments were performed on four lanthionine bridge-containing antibiotics. ECD of lantibiotics produced mainly c and z* ions, as has been observed previously with other peptides, but more interestingly, the less common c* and z ions were observed in abundance in the ECD spectra. These fragments specifically resulted from the cleavage of both a backbone amine bond and the thioether bond in a lanthionine bridge. ECD seemed to induce mainly cleavages near the lanthionine bridges. This fragmentation pattern indicates that lanthionine bridges play a key role in the selectivity of the ECD process. A new mechanism is postulated describing the formation of c* and z ions. Comparative low-energy CAD did not show such specificity. Nondissociative ECD products were quite abundant, suggesting that relatively stable double and triple radicals can be formed in the ECD process. Our results suggest that ECD can be used as a tool to identify the C-terminal attachment site of lanthionine bridges in newly discovered lantibiotics. 相似文献
3.
A nonenzymatic posttranslational modification of proteins and peptides is the spontaneous deamidation of asparaginyl residues via a succinimide intermediate to form a varying mixture of aspartyl and isoaspartyl residues. The isoaspartyl residue is generally difficult to detect particularly using mass spectrometry because isoaspartic acid is isomeric with aspartic acid so that there is no mass difference. However, electron capture dissociation has demonstrated the ability to differentiate the two isoforms in synthetic peptides using unique diagnostic ions for each form; the cr. + 58 and z(l-r) - 57 fragment ions for the isoAsp form and the Asp side chain loss ((M + nH)(n-1)+. - 60) for the Asp form. Shown here are three examples of isoaspartyl detection in peptides from proteins; a deamidated tryptic peptide of cytochrome c, a tryptic peptide from unfolded and deamidated ribonuclease A, and a tryptic peptide from calmodulin deamidated in its native state. In all cases, the cr. + 58 and z(l-r) - 57 ions allowed the detection and localization of isoaspartyl residues to positions previously occupied by asparaginyl residues. The (M + nH)(n-1)+. - 60 ions were also detected, indicating the presence of aspartyl residues. Observation of these diagnostic ions in peptides from proteins shows that the method is applicable to defining the isomerization state of deamidated proteins. 相似文献
4.
Phosphopeptide/phosphoprotein mapping by electron capture dissociation mass spectrometry 总被引:12,自引:0,他引:12
Of methods for dissociation of multiply charged peptide and protein ions, electron capture dissociation (ECD) has the advantages of cleaving between a high proportion of amino acids, without loss of such posttranslational modifications as glycosylation and carboxylation. Here this capability is successfully extended to phosphorylation, for which collisionally activated dissociation (CAD) can cause extensive loss of H3PO4 and HPO3. As shown here, these losses are minimal in ECD spectra, an advantage for measuring the degree of phosphorylation. For phosphorylated peptides, ECD and CAD spectra give complementary backbone cleavages for identifying modification sites. For a 24-kDa heterogeneous phosphoprotein, bovine beta-casein, activated ion ECD cleaved 87 of 208 backbone bonds that identified a phosphorylation site at Ser-15, and localized three more among Ser-17,-18, -19, and -22 and Thr-24, and the last among four other sites. This is the first direct site-specific characterization of this key post-translational modification on a protein without its prior degradation, such as proteolysis. 相似文献
5.
Kjeldsen F Haselmann KF Budnik BA Sørensen ES Zubarev RA 《Analytical chemistry》2003,75(10):2355-2361
A comprehensive approach to protein identification and determination of sites of posttranslational modifications (PTMs) in heavily modified proteins was tested. In this approach, termed "reconstructed molecular mass analysis" (REMMA), the molecular mass distribution of the intact protein is measured first, which reveals the extent and heterogeneity of modifications. Then the protein is digested with one or several enzymes, with peptides separated by reversed-phase HPLC, and analyzed by Fourier transform mass spectrometry (FTMS). Vibrational excitation (collisional or infrared) or electron capture dissociation (ECD) of peptide ions provides protein identification. When a measured peptide molecular mass indicates the possibility of a PTM, vibrational excitation is applied to determine via characteristic losses the type and eventually the structure of the modification, while ECD determines the PTM site. Chromatographic peak analysis continues until full sequence coverage is obtained, after which the molecular mass is reconstructed and compared with the measured value. An agreement indicates that the PTM characterization was complete. This procedure applied to the bovine milk PP3 protein containing 25% modifications by weight yielded all known modifications (five phosphorylations, two O- and one N-glycosylation) as well as the previously unreported NeuNAc-Hex-[NeuNAc]HexNAc group O-linked to Ser60. With the FTMS performance improved, REMMA can serve as the basis for high-throughput, high-sensitivity PTM characterization of biological important proteins, which should speed up the proteomics research. 相似文献
6.
One of the challenges in protein interaction studies with chemical cross-linking stems from the complexity of intra-, inter-, and dead-end cross-linked peptide mixtures. We have developed new cross-linkers to study protein-protein interactions with mass spectrometry to improve the ability to deal with this complexity. Even the accurate mass capabilities of FTICR-MS alone cannot unambiguously identify cross-linked peptides from cell-labeling experiments due to the complexity of these mixtures resultant from the enormous number of possible cross-linked species. We have developed novel cross-linkers that have unique fragmentation features in the gas phase. The characteristics of these cross-linkers combined with the accurate mass capability of FTICR-MS can help distinguish cross-linking reaction products and assign protein identities. These cross-linkers that we call protein interaction reporters (PIRs) have been constructed with two reactive groups attached through two bonds that can be preferentially cleaved by low-energy CID of the respective protonated precursor ions. After cleavage of the labile bonds, the middle part of the linker serves as a reporter ion to aid identification of cross-linked peptides. This report highlights three new PIRs with new features that have been developed to improve the efficiency of release of reporter ions. The new cross-linkers reported here were tuned with the addition of an affinity tag, a hydrophilic group, a photocleavable group, and new low-energy MS/MS cleavable bonds. This report presents our investigation of the MSMS fragmentation behavior of selected protonated ions of the new compounds. The comprehensive fragmentation of these PIRs and PIR-labeled cross-linked peptides with low-energy collisions and an example of electron capture dissociation in FTICR-MS is presented. These new cross-linkers will contribute to current systems biology research by allowing acquisition of global or large-scale data on protein-protein interactions. 相似文献
7.
For the backbone dissociation of large (29 kDa) multiply charged protein ions in the gas phase by electron capture, the main experimental challenges are juxtaposition of the electron and ion for efficient capture, dissociation of tertiary noncovalent bonds that prevent product separation, and minimization of secondary electron capture that destroys larger product ions. A simple alternative methodology is described in which electrons (0.03-100 microA, 0.1-15 eV) are first impinged on a gas pulse in the ion cell of a Fourier transform mass spectrometer, followed by ion beam introduction. For carbonic anhydrase, the resulting plasma conditions produce 87% efficiency for electron capture; a single spectrum yields 512 product ions of 237 different masses from cleavage of 183 of the 258 interresidue bonds, while two spectra cleave 197 of these bonds. The problem of secondary dissociation of product ions is reduced by plasma conditions in which product ions are formed near electrons whose velocities are unfavorable and whose capture cross sections no longer have a square dependence on charge. One plasma ECD spectrum of ubiquitin provides its sequence de novo except for two residue pairs. ECD of casein identifies 126 of 208 interresidue cleavages, providing direct and specific characterization of all its 26 Ser/Thr/Tyr phosphorylation sites. 相似文献
8.
Electron capture dissociation (ECD) has previously been shown by other research groups to result in greater peptide sequence coverage than other ion dissociation techniques and to localize labile posttranslational modifications. Here, ECD has been achieved for 10-13-mer peptides microelectrosprayed from 10 nM (10 fmol/microL) solutions and for tryptic peptides from a 50 nM unfractionated digest of a 28-kDa protein. Tandem Fourier transform ion cyclotron resonance (FTICR) mass spectra contain fragment ions corresponding to cleavages at all possible peptide backbone amine bonds, except on the N-terminal side of proline, for substance P and neurotensin. For luteinizing hormone-releasing hormone, all but two expected backbone amine bond cleavages are observed. The tandem FTICR mass spectra of the tryptic peptides contain fragment ions corresponding to cleavages at 6 of 12 (1545.7-Da peptide) and 8 of 21 (2944.5-Da peptide) expected backbone amine bonds. The present sensitivity is 200-2000 times higher than previously reported. These results show promise for ECD as a tool to produce sequence tags for identification of peptides in complex mixtures available only in limited amounts, as in proteomics. 相似文献
9.
Pérot-Taillandier M Zirah S Rebuffat S Linne U Marahiel MA Cole RB Tabet JC Afonso C 《Analytical chemistry》2012,84(11):4957-4964
Characterizing the conformation of biomolecules by mass spectrometry still represents a challenge. With their knotted structure involving a N-terminal macrolactam ring where the C-terminal tail of the peptide is threaded and sterically trapped, lasso peptides constitute an attractive model for developing methods for characterizing gas-phase conformation, through comparison with their unknotted topoisomers. Here, the kinetics of electron capture dissociation (ECD) of a lasso peptide, capistruin, was investigated by electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry and compared to that of its branched-cyclic topoisomer, lactam-capistruin. Both peptides produced rather similar ECD spectra but showed different extent of H(?) transfer from c(i)' to z(j)(?) ions. Time-resolved double-resonance experiments under ECD conditions were performed to measure the formation rate constants of typical product ions. Such experiments showed that certain product ions, in particular those related to H(?) transfer, proceeded through long-lived complexes for capistruin, while fast dissociation processes predominated for lactam-capistruin. The formation rate constants of specific ECD product ions enabled a clear differentiation of the lasso and branched-cyclic topoisomers. These results indicate that the formation kinetics of ECD product ions constitute a new way to explore the conformation of biomolecules and distinguish between topoisomers and, more generally, conformers. 相似文献
10.
Positive ion mode collision-activated dissociation tandem mass spectrometry (CAD MS/MS) of O-sulfopeptides precludes determination of sulfonated sites due to facile proton-driven loss of the highly labile sulfonate groups. A previously proposed method for localizing peptide and protein O-sulfonation involves derivatization of nonsulfonated tyrosines followed by positive ion CAD MS/MS of the corresponding modified sulfopeptides for diagnostic sulfonate loss. This indirect method relies upon specific and complete derivatization of nonsulfonated tyrosines. Alternative MS/MS activation methods, including positive ion metastable atom-activated dissociation (MAD) and metal-assisted electron transfer dissociation (ETD) or electron capture dissociation (ECD) provide varying degrees of sulfonate retention. Sulfonate retention has also been reported following negative ion MAD and electron detachment dissociation (EDD), which also operates in negative ion mode in which sulfonate groups are less labile than in positive ion mode. However, an MS/MS activation technique that can effectively preserve sulfonate groups while providing extensive backbone fragmentation (translating to sequence information, including sulfonated sites) with little to no noninformative small molecule neutral loss has not previously been realized. Here, we report that negative ion CAD, EDD, and negative ETD (NETD) result in sulfonate retention mainly at higher charge states with varying degrees of fragmentation efficiency and sequence coverage. Similar to previous observations from CAD of sulfonated glycosaminoglycan anions, higher charge states translate to a higher probability of deprotonation at the sulfonate groups thus yielding charge-localized fragmentation without loss of the sulfonate groups. However, consequently, higher sulfonate retention comes at the price of lower sequence coverage in negative ion CAD. Fragmentation efficiency/sequence coverage averaged 19/6% and 33/20% in EDD and NETD, respectively, both of which are only applicable to multiply-charged anions. In contrast, the recently introduced negative ion ECD showed an average fragmentation efficiency of 69% and an average sequence coverage of 82% with complete sulfonate retention from singly- and doubly-deprotonated sulfopeptide anions. 相似文献
11.
We have previously demonstrated the suitability of data-dependent electron capture dissociation (ECD) for incorporation into proteomic strategies. The ability to directly determine sites of phosphorylation is a major advantage of electron capture dissociation; however, the low stoichiometry associated with phosphorylation means that phosphopeptides are often overlooked in data-dependent ECD analyses. In contrast, collision-induced dissociation (CID) tends to result in loss of the labile phosphate group, often at the expense of sequence fragments. Here, we demonstrate a novel strategy for the characterization of phosphoproteins which exploits the neutral loss feature of CID such that focused ECD of phosphopeptides is achieved. Peptides eluting from a liquid chromatograph are first subjected to CID, and if a neutral loss of 98 Da (corresponding to H3PO4) from the precursor is observed, ECD of that same precursor is performed; i.e., the method comprises neutral loss triggered ECD (NL-ECD-MS/MS). The method was applied to tryptic digests of beta-casein and alpha-casein. For alpha-casein, four sites of phosphorylation were identified with NL-ECD-MS/MS compared with a single site identified by ECD-MS/MS. The method also resulted in ECD of a doubly phosphorylated peptide. A further benefit of the method is that overall protein sequence coverage is improved. Sequence information from nonphosphorylated peptides is obtained as a result of the CID step. 相似文献
12.
Electron capture dissociation (ECD) is a promising method for de novo sequencing proteins and peptides and for locating the positions of labile posttranslational modifications and binding sites of noncovalently bound species. We report the ECD of a synthetic peptide containing 10 alanine residues and 6 lysine residues uniformly distributed across the sequence. ECD of the (M + 2H)(2+) produces a limited range of c (c(7)-c(15)) and z (z(9)-z(15)) fragment ions, but ECD of higher charge states produces a wider range of c (c(2)-c(15)) and z (z(2)-z(6), z(9)-z(15)) ions. Fragmentation efficiency increases with increasing precursor charge state, and efficiencies up to 88% are achieved. Heating the (M + 2H)(2+) to 150 degrees C does not increase the observed range of ECD fragment ions, indicating that the limited products are due to backbone cleavages occurring near charges and not due to effects of tertiary structure. ECD of the (M + 2Li)(2+) and (M + 2Cs)(2+) produces di- and monometalated analogues of the same c and z ions observed from the (M + 2H)(2+), with the abundance of dimetalated fragment ions increasing with fragment ion mass, a result consistent with the metal cations being located near the peptide termini to minimize Coulombic repulsion. In stark contrast to the ECD results, collisional activation of cesiated dications overwhelmingly results in ejection of Cs(+). The abundance of cesiated fragment ions formed from ECD of the (M + Cs + Li)(2+) exceeds that of lithiated fragment ions by 10:1. ECD of the (M + H + Li)(2+) results in exclusively lithiated c and z ions, indicating an overwhelming preference for neutralization and cleavage at protonated sites over metalated sites. These results are consistent with preferential neutralization of the cation with the highest recombination energy. 相似文献
13.
Haselmann KF Budnik BA Olsen JV Nielsen ML Reis CA Clausen H Johnsen AH Zubarev RA 《Analytical chemistry》2001,73(13):2998-3005
A combination of external accumulation (XA) with electron capture dissociation (ECD) improves the electron capture efficiency, shortens the analysis time, and allows for rapid integration of multiple scans in Fourier transform mass spectrometry. This improves the signal-to-noise ratio and increases the number of detected products, including structurally important MS3 fragments. With XA-ECD, the range of the labile species amenable to ECD is significantly extended. Examples include the first-time determination of the positions of six GalNAc groups in a 60-residue peptide, five sialic acid and six O-linked GalNAc groups in a 25-residue peptide, and the sulfate group position in a 11-residue peptide. Even weakly bound supramolecular aggregates, including nonspecific peptide complexes, can be analyzed with XA-ECD. Preliminary results are reported on high-rate XA-ECD that uses an indirectly heated dispenser cathode as an electron source. This shortens the irradiation time to > or = 1 ms and increases the acquisition rate to 3 scans/s, an improvement by a factor of 10-100. 相似文献
14.
The structural characterization of gaseous biomolecular ions remains a challenging task. Here, we employ a combination of gas-phase hydrogen-deuterium exchange (HDX) and electron capture dissociation (ECD) mass spectrometry for gaining insights into the properties of two electrosprayed peptides: RA(9)K and RG(9)K. Mass analysis of ECD fragments provides spatially resolved labeling information. ND(3)-mediated HDX at peptide termini and amino acid side chains goes to completion within 1 s. Backbone amide labeling occurs more slowly, and proceeds in a structurally sensitive fashion. HDX is more extensive for RG(9)K than for RA(9)K, suggesting a more "open" conformation for the former. Residues 7-10 in RA(9)K are strongly protected, which indicates the presence of stable backbone hydrogen bonds at these sites. Our findings are consistent with the results of previous ion mobility measurements and computational investigations. Overall, it appears that the combination of gas-phase HDX and ECD represents a viable approach for uncovering structural features of biomolecular ions in the gas phase. 相似文献
15.
Atmospheric pressure electron capture dissociation (AP-ECD) is an emerging technique with the potential to be a more accessible alternative to conventional ECD/electron transfer dissociation (ETD) methods because it can be implemented using a stand-alone ion source device suitable for use with any existing or future electrospray ionization mass spectrometer. With AP-ECD, no modification of the main instrument is required, so it may easily be retrofitted to instruments not originally equipped with ECD/ETD capabilities. Here, we present our first purpose-built AP-ECD source and demonstrate its use in conjunction with capillary LC for the analysis of substance P, a tryptic digest of bovine serum albumin, and a phosphopeptide mixture. Quality ECD spectra were obtained for all the samples at the low femtomole level, proving that LC-AP-ECD-MS is suitable for the structural analysis of peptides and protein digests, in this case using an unmodified quadrupole time-of-flight mass spectrometer built ca. 2002. 相似文献
16.
Distinguishing the epimers iduronic acid (IdoA) and glucuronic acid (GlcA) has been a long-standing challenge for the mass spectrometry analysis of glycosaminoglycan (GAG) oligosaccharides. In this work, electron detachment dissociation (EDD) and Fourier transform ion cyclotron resonance mass spectrometry is shown to provide mass spectral features that can distinguish GlcA from IdoA in heparan sulfate (HS) tetrasaccharides. EDD of HS tetrasaccharide dianions produces a radical species that fragments to produce information-rich glycosidic and cross-ring product ions which can be used to determine the sites of acetylation/sulfation. More significantly, EDD of HS tetrasaccharide epimers produces diagnostic product ions that can be used to distinguish IdoA from GlcA. These diagnostic product ions are not observed in the tandem mass spectra obtained by collisionally activated dissociation or infrared multiphoton dissociation of the tetrasaccharides, suggesting a radical-initiated mechanism for their formation. Differences in the observed product ions obtained by EDD of the tetrasaccharide epimers can be rationalized by simple alpha-cleavage of an oxy radical located at C2 or C3 or a radical at C3 or C4. These radicals are proposed to arise from a hydrogen rearrangement in which a hydrogen atom is transferred from the C2 or C3 hydroxyl group or C3 or C4 to a carboxy radical at C5. This hydrogen transfer depends on the proximity of the carboxy radical to the hydroxyl group on C2 or C3 or the hydrogen on C3 or C4 and is thus influenced by C5 stereochemistry. These epimer-sensitive fragmentations should allow this approach to be applied to the structural analysis of a wide variety of GAG oligosaccharides. 相似文献
17.
In hot electron capture dissociation (HECD), multiply protonated polypeptides fragment upon capturing approximately 11-eV electrons. The excess of energy upon the primary c, z* cleavage induces secondary fragmentation in z* fragments. The resultant w ions allow one to distinguish between the isomeric Ile and Leu residues. The analytical utility of HECD is evaluated using tryptic peptides from the bovine milk protein PP3 containing totally 135 amino acid residues. Using a formal procedure for Ile/Leu (Xle) residue assignment, the identities of 20 out of 25 Xle residues (80%) were determined. The identity of an additional two residues could be correctly guessed from the absence of the alternative w ions, and only two residues, for which neither expected nor alternative w ions were observed, remained unassigned. Reinspection of conventional ECD spectra also revealed the presence of Xle w ions, although at lower abundances, with 44% of all Xle residues distinguished. Using a dispenser cathode as an electron source, identification of four out of five Xle residues in a 2.7-kDa peptide was possible with one acquisition 2 s long, with identification of all five residues by averaging of five such acquisitions. Unlike the case of high-energy collision-induced dissociation, no d ions were observed in the HECD of tryptic peptides. 相似文献
18.
Activated ion electron capture dissociation for mass spectral sequencing of larger (42 kDa) proteins 总被引:3,自引:0,他引:3
In previous studies, electron capture dissociation (ECD) has been successful only with ionized smaller proteins, cleaving between 33 of the 153 amino acid pairs of a 17 kDa protein. This has been increased to 99 cleavages by colliding the ions with a background gas while subjecting them to electron capture. Presumably this ion activation breaks intramolecular noncovalent bonds of the ion's secondary and tertiary structure that otherwise prevent separation of the products from the nonergodic ECD cleavage of a backbone covalent bond. In comparison to collisionally activated dissociation, this "activated ion" (AI) ECD provides more extensive, and complementary, sequence information. AI ECD effected cleavage of 116, 60, and 47, respectively, backbone bonds in 29, 30, and 42 kDa proteins to provide extensive contiguous sequence information on both termini; AI conditions are being sought to denature the center portion of these large ions. This accurate "sequence tag" information could potentially identify individual proteins in mixtures at far lower sample levels than methods requiring prior proteolysis. 相似文献
19.
With high-mass accuracy and consecutively obtained electron transfer dissociation (ETD) and higher-energy collisional dissociation (HCD) tandem mass spectrometry (MS/MS), reliable (≥97%) and sensitive fragment ions have been extracted for identification of specific amino acid residues in peptide sequences. The analytical benefit of these specific amino acid composition (AAC) ions is to restrict the database search space and provide identification of peptides with higher confidence and reduced false negative rates. The 6706 uniquely identified peptide sequences determined with a conservative Mascot score of >30 were used to characterize the AAC ions. The loss of amino acid side chains (small neutral losses, SNLs) from the charge reduced peptide radical cations was studied using ETD. Complementary AAC information from HCD spectra was provided by immonium ions. From the ETD/HCD mass spectra, 5162 and 6720 reliable SNLs and immonium ions were successfully extracted, respectively. Automated application of the AAC information during database searching resulted in an average 3.5-fold higher confidence level of peptide identification. In addition, 4% and 28% more peptides were identified above the significance level in a standard and extended search space, respectively. 相似文献
20.
Fälth M Savitski MM Nielsen ML Kjeldsen F Andren PE Zubarev RA 《Analytical chemistry》2008,80(21):8089-8094
Small neutral losses from charge-reduced species [M + nH] (( n-1)+* ) is one of the most abundant fragmentation channels in both electron capture dissociation, ECD, and electron transfer dissociation, ETD. Several groups have previously studied these losses on particular examples. Now, the availability of a large (11 491 entries) SwedECD database ( http://www.bmms.uu.se/CAD/indexECD.html) of high-resolution ECD data sets on doubly charged tryptic peptides has made possible a systematic study involving statistical evaluation of neutral losses from [M + 2H] (+ * ) ions. Several new types of losses are discovered, and 16 specific (>94%) losses are characterized according to their specificity and sensitivity, as well as occurrence for peptides of different lengths. On average, there is more than one specific loss per ECD mass spectrum, and two-thirds of all MS/MS data sets in SwedECD contain at least one specific loss. Therefore, specific neutral losses are analytically useful for improved database searching and de novo sequencing. In particular, N and GG isomeric sequences can be distinguished. The pattern of neutral losses was found to be remarkably dissimilar with the losses from radical z* fragment ions: e.g., there is no direct formation of w ions from the reduced species. This finding emphasizes the difference in fragmentation behaviors of hydrogen-abundant and hydrogen-deficient species. 相似文献