首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 380 毫秒
1.
2.
The photodegradation of seven carbamate pesticides (bendiocarb, isoprocarb, promecarb, ethiofencarb, furathiocarb, fenoxycarb and pirimicarb), in aqueous solution, has been examined by GC-MS. The most general result was formation of the corresponding phenols. Irradiation of isoprocarb and promecarb also resulted in photo-Fries rearrangement to ortho- and para-hydroxybenzamides. In the case of ethiofencarb photocleavage of the carbon-sulfur bond gave 2-methylphenyl methylcarbamate as main product. Likewise, N-S bond cleavage occurred upon irradiation of furathiocarb, to allow the formation of the carbamate insecticide carbofuran, butyl methylcarbamate and carbofuranphenol. Under similar conditions, fenoxycarb gave p-phenylphenol and 2-hydroxydibenzofuran, through primary homolysis of the aryloxy-methylene bond. Finally, pirimicarb gave rise to 2-formylamino-5,6-dimethylpyrimidin-4-yl dimethylcarbamate.  相似文献   

3.
The cyanoborane (-BH2CN) nucleosides and nucleotides are a new class of compounds that mimic natural and synthetic congeners in many ways and exhibit interesting biochemical and biophysical properties. The B-N bond is isoelectronic with the C-N+ bond of N7-alkylated 2'-nucleosides, as well as the C-C bond of naturally occurring 7-alkyl-7-deazanucleosides. These compounds differ from normal guanosine in that they are incapable of hydrogen bonding at the 7-position. The syntheses of N7-cyanoborane 2'-deoxyguanosine, N2-(dimethylaminomethylene)-N7-cyanoborane 5'-(dimethoxytrityl)-2'-deoxyguanosine (3), and N2-isobutyryl-N7-cyanoborane 5'-(dimethoxytrityl)-2'-deoxyguanosine (9) are described. Removal of the dimethoxytrityl (DMT) group from 3 or 9 is accompanied by significant loss of the cyanoborane moiety. Additionally, dimethoxytritylation of a cyanoboronated nucleoside leads to partial deboronation, thus limiting use of the commercially available 5'-DMT nucleosides as viable precursors in base-boronated oligonucleotide synthesis. The incompatibility of the cyanoborane moiety under DMT removal/addition conditions necessitated the search for an alternative method of protecting the 5'-hydroxyl of the nucleoside. This paper addresses the possible cause of deboronation and describes the synthesis of N7-cyanoboronated nucleosides by a method that avoids transient protection of the sugar hydroxyls.  相似文献   

4.
When N-alkylpyridinium derivatives were reduced with sodium borohydride-nickel (II) chloride reduction system, reductive cleavage occurred at the C-N bond in the pyridine ring of N-alkylpyridinium derivatives to give a small amount of reductive cleavage product along with the major perhydrogenated product. It was presumed in the previous report that this reductive cleavage in the pyridine ring proceeded through a complex of nickel ion and 1,2,3,6-tetrahydropyridine derivatives produced with NaBH4 alone reduction. The abundances of these reductive cleavage products arising from N-alkylpyridinium derivatives, i.e., paraquat, diquat and so on, are capable of giving a bad effect on the accuracy of gas chromatographic analysis. For the purpose of inhibition of the reductive cleavage in this reduction system, a suitable catalyst was examined. In addition, we pursued whether borane-1,2,3,6-tetrahydropyridine derivative complexes arose from N-alkylpyridinium derivatives by NaBH4 alone reduction or not, and whether these borane-amine complexes were the precursors of reductive cleavage products or not. N-Alkyl-1,2,3,6-tetrahydropyridine derivatives (III-I, IV-I, VI-I, VII-I and VIII-I) and the corresponding borane-amine complexes (III-II, IV-II, VI-II, VII-II and VIII-II) were synthesized by NaBH4 reduction in aqueous solution of N-alkylpyridinium salts, i.e. I, II, 1,4-dimethylpyridinium iodide (III), 1-dodecylpyridinium chloride (IV), 1,1'-diethyl-4,4'-dipyridinium dichloride (V), 1-methyl-4-phenylpyridinium iodide (VI), 1-n-propylpyridinium iodide (VII) and 1-n-butylpyridinium iodide (VIII). The structure of the borane-amine complexes were proved by the Mass spectrometry and 1H- and 13C-NMR analysis. The NiCl2-NaBH4 reduction of the borane-amine complexes gave the perhydrogenated products alone, but not reductive cleavage products. In conclusion, it was recognized that the precursors of reductive cleavage products were not borane-amine complexes, but 1,2,3,6-tetrahydropyridine. Furthermore, it was found the reductive cleavage at the C-N bond in the pyridine ring of these 1,2,3,6-tetrahydropyridine derivatives was hindered by applying Amberlite-Ni2B, NaBH4 reduction system.  相似文献   

5.
To understand the role of NMAA in the bonding of composite resin to a dentin surface, we investigated the effects of N-methacryloyl amino acid (NMAA) application on the expansion of aggregated collagen fibers, formation of a hybrid layer, and the tensile bond strength between composite resin and dentin. Four NMAA derivatives--N-methacryloyl-alpha-glycine (NMGly), N-methacryloyl-gamma-amino n-butyric acid (NMBu), N-methacryloyl-alpha-hydroxyproline (NMHPro), and N-methacryloyl-alpha-glutamic acid (NMGlu)--were prepared and applied to dentin surfaces which had been etched with 40% by mass H3PO4 and air-blown. The shrunken collagenous layer expanded by approximately 50% to 70% by volume of the original collagenous layer thickness after application of the NMAA primers. Application of the bonding agent and composite resin after NMAA treatment resulted in the formation of a hybrid layer. The thickness of the hybrid layer was somewhat smaller than the collagenous layer formed by the NMAA treatment only, regardless of the type of NMAA used. The thickness of the hybrid layer was approximately ten times larger than that formed without NMAA treatment. Although all NMAA primers formed hybrid layers of similar thickness, higher tensile bond strengths, from 13 to 15 MPa, were obtained when etched and air-blown dentin was treated with NMBu, NMGly, or NMGlu. NMHPro gave only 6.6 MPa, a value similar to that obtained when no NMAA was used. We concluded, therefore, that formation of the hybrid layer is a necessary but insufficient condition for high bond strength.  相似文献   

6.
BACKGROUND: Phosphoryl transfer, typically involving high energy phosphate donors such as ATP, is the most common class of biological reactions. Despite this, the transition state for phosphoryl transfer from ATP in solution has not been systematically investigated. Characterization of the transition state for the uncatalyzed hydrolysis of ATP would provide a starting point for dissection of enzyme-catalyzed reactions. RESULTS: We examined phosphoryl transfer from ATP, GTP and pyrophosphate to a series of alcohols; these reactions are analogous to the phosphorylation of sugars and other biological alcohols and to the hydrolysis of ATP. The Br?nsted beta(nucleophile) value of 0.07 is small, indicating that there is little bond formation between the incoming nucleophile and the electrophilic phosphoryl group in the transition state. Coordination of Mg2+ has no measurable effect on this value. The Br?nsted beta(leaving group) value of -1.1 for phosphoryl transfer to water from a series of phosphoanhydrides is large and negative, suggesting that the bond between phosphorous and the leaving group oxygen is largely broken in the transition state. CONCLUSIONS: Uncatalyzed hydrolysis of ATP in solution occurs via a dissociative, metaphosphate-like transition state, with little bond formation between nucleophile and ATP and substantial cleavage of the bond between the gamma-phosphoryl moiety and the ADP leaving group. Bound Mg2+ does not perturb the dissociative nature of the transition state, contrary to proposals that enzyme-bound metal ions alter this structure. The simplest expectation for phosphoryl transfer at the active site of enzymes thus entails a dissociative transition state. These results provide a basis for analyzing catalytic mechanisms for phosphoryl transfer.  相似文献   

7.
One of the attractions of using enzymes for chemical syntheses is the control of stereochemistry: problems of racemization that attend chemical C-N ligation methods are completely avoided. Furthermore, the enzymatic approach has the advantage that only minimal protection-deprotection steps are involved. The Impetus to develop non-conventional catalysis procedures has sprung from the lack of usable native enzymes that normally catalyze the formation of peptide bonds for biotransformation. In peptide syntheses that make use of the 'reverse hydrolysis potential' of proteases several problems need to be considered, especially the necessity of minimizing competing hydrolysis of weakly activated acyl donor esters and the need to circumvent undesired product cleavage. Some approaches to suppress competitive reactions have been developed in our group, namely leaving group manipulations at the acyl donor in kinetically controlled reactions, enzymatic synthesis in organic solvent-free micro-aqueous systems, cryoenzymatic peptide synthesis, and biotransformations in frozen aqueous systems. Finally, for the first time, zymogens, which are known as catalytically inactive precursors of proteases, could be used as biocatalysts for practically irreversible peptide bond formation.  相似文献   

8.
The effect of the inclusion of aminobenzoic acid derivatives (ABAD) in a self-etching primer comprising 4-acryloxyethyltrimellitic acid (4-AET), HEMA and water on shear bond strength to ground dentin was investigated. The mean bond strengths to dentin were significantly increased by the inclusion of 0.307 mol% ABAD in the 4-AET/HEMA primer, when compared with the control (0 wt% ABAD) (p < 0.01). A particularly high value (38.0 MPa) of shear bond strength was obtained in the use of the primer containing p-nitroanthranilic acid (p-NAA). It seemed to assume that the effect of p-NAA could be caused by the strong electron-withdrawing group of -NO2. From SEM observation, it was found that bonding resin appeared to adhere strongly to the ground dentin without formation of any resin-tags in the dentinal tubules. It was thought that the ABAD with 4-AET/HEMA could perform facilitating photo-polymerization at the bonding interface, and resulted in increased bond strength to ground dentin, and that the bond strength could be affected by the electronegativities of substitutional groups of ABAD.  相似文献   

9.
王翔  刘丽莎  曹晖  杨红芸 《黄金》2009,30(12):5-8
综述了金催化剂在有机合成中的成功应用及研究进展。这些应用按功能划分为:①C—X(X为C,N,O)键的构建;②可以促进重键的亲电加成反应;③吲哚及其衍生物的合成。  相似文献   

10.
Papain, a prototypic cysteine protease was inactivated by methyl and benzyl esters of (2S,3S)-2-benzyl-3,4-epoxybutanoic acid. On the other hand, methyl ester of (2S,3R)-2-benzyl-3,4-epoxybutanoic acid was shown to be a competitive inhibitor for the enzyme. It was inferred from the inactivation stereochemistry that in the papain catalytic reaction the nucleophilic attack of the side chain thioalkoxide of Cys-25 on the scissile peptide bond of substrates occurs in the 're' fashion. The papain inactivating potency of (2S,3S)-2-benzyl-3,4-epoxybutanoic acid methyl ester was enhanced over three-fold in a pH 8.0 solution compared with in the neutral solution. This together with our previous observation with alpha-chymotrypsin and the recent theoretical treatment of the enzymic reaction of papain, suggest that in the inactivation of papain by oxirane containing inhibitors, the oxirane does not need to be activated by prior protonation as thought previously. The oxirane ring is sufficiently labile that the unprotonated oxirane moiety can undergo an electrophilic reaction with the Cys-25 thiolate.  相似文献   

11.
The principal cause of bacterial resistance to penicillin and other beta-lactam antibiotics is the acquisition of plasmid-encoded beta-lactamases, enzymes that catalyze hydrolysis of the beta-lactam bond and render these antibiotics inactive. Clavulanic acid is a potent inhibitor of beta-lactamases and has proven clinically effective in combating resistant infections. Although clavulanic acid and penicillin share marked structural similarities, the biosyntheses of their bicyclic nuclei are wholly dissimilar. In contrast to the efficient iron-mediated oxidative cyclization of a tripeptide to isopenicillin N, the critical beta-lactam ring of clavulanic acid is demonstrated to form by intramolecular closure catalyzed by a new type of ATP/Mg2+-dependent enzyme, a beta-lactam synthetase (beta-LS). Insertional inactivation of its encoding gene in wild-type Streptomyces clavuligerus resulted in complete loss of clavulanic acid production and the accumulation of N2-(carboxyethyl)-L-arginine (CEA). Chemical complementation of this blocked mutant with authentic deoxyguanidinoproclavaminic acid (DGPC), the expected product of the beta-LS, restored clavulanic acid synthesis. Finally, overexpression of this gene gave the beta-LS, which was shown to mediate the conversion of CEA to DGPC in the presence of ATP/Mg2+. Primary amino acid sequence comparisons suggest that this mode of beta-lactam formation could be more widely spread in nature and mechanistically related to asparagine synthesis.  相似文献   

12.
Catechols are widespread in the environment, especially as constituents of edible plants. A number of these catechols may undergo oxidative metabolism to electrophilic o-quinones (3,5-cyclohexadien-1,2-dione) by oxidative enzymes such as cytochrome P450 and peroxidases. Alkylation of cellular nucleophiles by these intermediates and the formation of reactive oxygen species, especially through redox cycling of o-quinones, could contribute to the cytotoxic properties of the parent catechols. In contrast, isomerization of the o-quinones to electrophilic quinone methides (4-methylene-2,5-cyclohexadien-1-one, QM) could cause cellular damage primarily through alkylation. In this investigation, we treated human melanoma cells with two groups of catechols. These cells have high levels of tyrosinase required to oxidize catechols to quinoids. For catechols which are oxidized to o-quinones that cannot isomerize to quinone methides or form unstable quinone methides, plots of the cytotoxicity data (ED50) versus the reactivity of the o-quinones gave an excellent linear correlation; decreasing o-quinone reactivity led to a decrease in the cytotoxic potency of the catechol. In contrast, catechols which are metabolized by the o-quinone/p-quinone methide bioactivation pathway were equally cytotoxic but showed no correlation between the reactivity of the o-quinones and the cytotoxic potency of the catechols. The most likely explanation for this effect is a change in cytotoxic mechanism from o-quinone-mediated inhibition of cell growth to a bioactivation pathway based on both o-quinone and p-QM formation. These results substantiate the conclusion that the involvement of the o-quinone/ QM pathway in catechol toxicity depends on a combination between the rate of enzymatic formation of the o-quinone, the rate of isomerization to the more electrophilic QM, and the chemical reactivity of the quinoids.  相似文献   

13.
The generic model of psychotherapy is offered as a transtheoretical model of universal change processes. Session 3 change processes are examined in a naturalistic study of dynamic therapy guided by the generic model. Findings replicate and extend earlier work addressing propositions of the generic model in dynamic therapy. Openness and bond contributed to in-session realizations, whereas bond and realizations fostered session progress. Session progress, bond, use of experiential operations, and less frequent use of dynamic interventions contributed to change between Sessions 2 and 4. Discussion outlines a model of change in early dynamic therapy and highlights the usefulness of the generic model for the evaluation of change processes. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

14.
This study investigated the diastereoselective synthesis of three dipeptide templates 1, 2 and 3, which may be regarded as conformationally restricted analogs of H-Gly-Xaa-OH, in which Xaa constitutes an aromatic amino acid. Bond formation between alpha-C of Gly and the aromatic moiety was achieved by proton-catalyzed intramolecular electrophilic aromatic substitution. The absolute configuration of the dipeptide templates was determined by single-crystal X-ray crystallography or by nuclear Overhauser enhancement measurements. A protective group strategy was elaborated to allow their incorporation into peptide sequences by liquid phase as well as by solid-phase peptide synthesis. The templates were used to generate an enkephalin analog 15, a modified peptidic neurokinin antagonist 20 and two dermorphin derivatives (24 and 33). Molecular dynamic simulations with 15 and 20 revealed the preference for a turn-like motif for 15. The biological activity, as investigated by respective receptor binding and functional assays, was strongly diminished with all four derivatives, indicating that their receptor-relevant molecular geometries lie outside the examined conformational space.  相似文献   

15.
Synthesis of a 1 alpha,25-dihydroxyvitamin D2 analog (3), in which the double bond in the side-chain is replaced by an amide group, is described. Condensation of a carboxylic acid (8) with an amine (6) gave an amide (9), which in turn led to 3 via several steps. The analog (3) could not bind to the chick cytosol vitamin D receptor, which indicated the importance of the hydrophobic interaction of the C(22)-C(23) double bond in 1 alpha,25-dihydroxyvitamin D2 (2) with the vitamin D receptor.  相似文献   

16.
Oxidation of tissue sections by 25-30% (v/v) acetic anhydride (AA) in dimethyl sulfoxide (DMSO) resulted in facile induction of tissue carbonyls readily localized with Schiff's reagent and o-dianisidine but not with the 3-hydroxy-2-naphthoic acid hydrazide-tetraazotized diorthoanisidine method. Carbonyls generated by AA-DMSO oxidation were confined predomintly to substrates containing pyranosides. Oxidized furanosides, as represented by deoxyribonucleic acid and ribonucleic acid, gave only a residual color reaction. The AA-DMSO method possesses an advantage in that the oxidation of tissue polysaccharides does not proceed beyond the formation of carbonyly and is particularly suited for use after formol fixation.  相似文献   

17.
Treatment of the 5'-carboxaldehyde derived by Moffatt oxidation of 6-N-benzoyl-2',3'-O-isopropylideneadenosine (1) with the "(bromofluoromethylene)triphenylphosphorane" reagent and deprotection gave 9-(6-bromo-5, 6-dideoxy-6-fluoro-beta-d-ribo-hex-5-enofuranosyl)adenine (4). Parallel treatment with a "dibromomethylene Wittig reagent" and deprotection gave 9-(6,6-dibromo-5, 6-dideoxy-beta-d-ribo-hex-5-enofuranosyl)adenine (7), which also was prepared by successive bromination and dehydrobromination of the 6'-bromohomovinyl nucleoside 8. Bromination-dehydrobromination of the 5'-bromohomovinyl analogue 11 and deprotection gave (E)-9-(5, 6-dibromo-5,6-dideoxy-beta-d-ribo-hex-5-enofuranosyl)adenine (15). Compounds 4, 7, and 15 were designed as putative substrates of the "hydrolytic activity" of S-adenosyl-l-homocysteine (AdoHcy) hydrolase. Enzyme-mediated addition of water across the 5,6-double bond could generate electrophilic acyl halide or alpha-halo ketone species that could undergo nucleophilic attack by proximal groups on the enzyme. Such type II (covalent) mechanism-based inactivation is supported by protein labeling with 8-[3H]-4 and concomitant release of bromide and fluoride ions. Incubation of AdoHcy hydrolase with 7 or 15 resulted in irreversible inactivation and release of bromide ion. In contrast with type I mechanism-based inactivation, reduction of enzyme-bound NAD+ to NADH was not observed. Compounds 4, 7, and 15 were not inhibitory to a variety of viruses in cell culture, and weak cytotoxicity was observed only for CEM cells.  相似文献   

18.
The tryptophan content of purified bovine rhodopsin was obtained by two independent methods: direct analysis of hydrolysates prepared by digestion of opsin with methanesulfonic acid containing 0.2% 3-(2-aminoethyl)indole and a computer-assisted analysis of the near-UV spectrum of rhodopsin. Both methods gave a value of eight tryptophan residues per rhodopsin. Based on the near-UV spectral analysis, the light-induced difference spectrum of rhodopsin, and the susceptibility of residues to oxidation by N-bromosuccinimide, we concluded that approximately half of the tyrosine and tryptophan residues are shielded to some extent from the aqueous solvent, that two of the tryptophan residues are in very apolar environments, and that following light excitation at least one of these tryptophan residues and several tyrosines are exposed to an aqueous environment. Analysis of rhodopsin absorption in the far-UV indicated that below 240 nm, approximately half of the absorption is due to aromatic residues and that the other half is largely due to the peptide bond. The effect of illumination on secondary structure is to induce a loss in helical structure, calculated to involve 35% of the amino acid residues in purified rhodopsin. If light-induced changes in secondary structure are specifically excluded, most of these results can be extended to bovine rod outer segment membranes.  相似文献   

19.
ADP-ribosyl cyclase is a multi-functional enzyme that catalyzes the formation of two Ca2+ signaling molecules, cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP). X-ray crystallography of three different crystal forms shows that it is a non-covalent dimer. Chemical cross-linking and dynamic light scattering were used in this study to determine if the cyclase is also a non-covalent dimer in solution. Treatment of the cyclase in dilute solution (0.05 mg/ml) with dimethylsuberimidate resulted in complete conversion to a species with molecular weight about twice that of the monomeric cyclase. Prolonged cross-linking of the cyclase at four times higher concentration produced also only the covalently linked dimers and no multimer formation was observed. The cross-linked dimer retained full enzymatic activity and readily catalyzed the formation of cADPR from NAD, NAADP from NADP, cyclic ADP-ribose phosphate from NADP, and cyclic GDP-ribose from nicotinamide guanine dinucleotide. Analysis of the autocorrelation functions obtained from dynamic light scattering measurements indicated the cyclase solution (2 mg/ml) was composed of a single molecular species and its diffusion coefficient was measured to be 7. 4x10-7 cm2/s. Computer modeling using the crystallographic dimensions of the non-covalent cyclase dimer, a donut shaped molecule with a central cavity and overall dimensions of 7x6x3 nm, gave a value for the diffusion coefficient essentially the same as that measured. These results indicate the cyclase is a non-covalent dimer in solution.  相似文献   

20.
The stability of the immunologic adjuvant QS-21 (Cambridge Biotech Corp.) was optimized for use in the MN rgp120 HIV-1 subunit vaccine. QS-21, a saponin purified by reversed phase HPLC from an extract of the bark of the Quillaja saponaria Molina tree, consisted initially of one species (QS-21A), but converted to two species, QS-21A and QS-21B, in aqueous solution. NMR studies indicated that the two species are structural isomers and that isomerization occurs by intramolecular trans-esterification of the fatty acid moiety between the 3- and 4-hydroxyl groups of the fucose ring (Jacobsen et al. Carbohydr. Res., in press). Both isomers were adjuvant active. Storage of QS-21 in aqueous solution resulted in the interconversion between these isomer forms, as well as the slow formation of degradation products due to ester hydrolysis. The critical micellar concentration of QS-21 in succinate buffer was measured by a fluorescent probe method to be 51 +/- 9 micrograms/mL. Studies were performed at different concentrations of QS-21 to assess the influence of micelle formation on stability. These experiments indicated that QS-21 is more stable in the micellar form, presumably because the most labile ester bond linking the fatty acid moiety to fucose is constrained or buried in the hydrophobic micellar environment. The pH of maximum stability was pH 5.5, the pH for minimum degradation of most esters. The final formulation, 500 micrograms/mL QS-21 in 20 mM sodium succinate, 150 mM NaCl, pH 5.5, provided a shelf-life of greater than 2 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号