首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
Al2O3-SiO2(sf)/AZ91D复合材料的摩擦磨损性能   总被引:4,自引:0,他引:4  
以硅酸铝短纤维作增强体,以磷酸铝作为预制体高温粘结剂,采用挤压浸渗法制备镁基复合材料.利用MM200磨损试验机,分别在10、30、50 N的外加载荷和0.47和0.94 m/s条件下,与硬度(HRC)为53的20Cr对磨环在干态条件下进行对磨,结果表明,在0.47 m/s的滑行速度和10、30 N的外加载荷条件下,复合材料的磨损机制基本上是单一的磨粒磨损;在0.47 m/s的滑行速度和50 N外加载荷条件下,复合材料在磨粒磨损的基础上附带有轻微的剥落磨损;在0.94 m/s的滑行速度和50 N外加载荷条件下,复合材料的摩擦磨损机制是以磨粒磨损为主并辅以轻微粘着磨损的复合磨损,此时,复合材料表现出相对较好的摩擦磨损性能.  相似文献   

2.
采用硅酸铝纤维和镁合金制备出结构紧密的Al2O3-SiO2/AZ91D镁基复合材料。介绍了复合材料的制备工艺,适宜的挤压铸造工艺为预制体温度650℃、模具温度550℃、浇注温度760℃和30~50MPa压力。XRD、SEM、EDS和光学金相显微镜OM等分析结果表明,复合材料主要由Mg、β-Mg17Al12、MgO、AlPO4、3Al2O3·2SiO2和Mg2Si等结晶相组成;镁与硅酸铝纤维反应生成MgO和汉字状Mg2Si等产物;基体镁与硅酸铝纤维的界面形成较紧密的结合层。  相似文献   

3.
滑动速度对Al2O3-SiO2(sf)/AZ91D复合材料磨损性能的影响   总被引:1,自引:0,他引:1  
以硅酸铝短纤维作为增强体,以磷酸铝作为预制体高温粘结剂,采用挤压浸渗法制备出硅酸铝短纤维体积分数分别为15%、20%、25%和30%的镁基复合材料.利用MM200磨损试验机,分别在10、20、30、40、50 N的外加载荷及0.47 m/s和0.94 m/s速度条件下,与硬度(HRC)为53的20Cr对磨环在干磨条件下进行对磨,考察了滑动速度对硅酸铝短纤维增强AZ91D镁基复合材料试样磨损量的影响,并通过扫描电镜对试样摩擦表面进行了形貌观察和分析.结果表明,滑动速度的变化对复合材料试样磨损量的影响比对AZ91D基体合金试样磨损量的影响更大更复杂,这种影响趋势既因复合材料体积分数的变化而不同,同时取决于外加载荷的大小.  相似文献   

4.
为了推动半固态加工在镁基复合材料成形中的应用,采用液态浸渗法制备出体积分数为10%的Al2O3sf/AZ91D-Y镁基复合材料,并采用等径道角挤压对镁基复合材料进行了形变诱导。再对镁基复合材料进行了二次重熔,并采用等温压缩实验对镁基复合材料在半固态下的力学性能进行了研究。研究表明:在550℃和560℃时延长保温时间有利于组织的球化,在560℃比550℃时,更加能促进晶粒的结晶球化;在相同的应变速率下,压缩变形时的峰值应力随着加热温度升高而降低;在相同的加热温度下,应变速率越大,峰值应力越大。  相似文献   

5.
利用高能超声法原位制备Al2Y /AZ91镁基复合材料半固态浆料,对其半固态表观粘度进行测量,实验表明:半固态Al2Y /AZ91镁基复合材料表观粘度随固相分数和Al2Y的体积分数的增加而增大,半固态表观粘度与固相分数之间关系按指数规律变化,在相同的实验条件下,半固态表观粘度随超声功率增大而减小。在对实验数据拟合的基础上,建立了半固态Al2Y /AZ91镁基复合材料的流变模型。  相似文献   

6.
利用高温压缩蠕变实验研究了Nd对复合材料的高温蠕变性能以及压应力对濡变应力指数的影响.结果表明稀土元素Nd的加入可以明显改善复合材料的高温蠕变性能,试验中添加0.8%Nd的Al2O3f/AZ91D复合材料的抗高温蠕变性能最好;当应力为60~90 MPa与156~180MPa时复合材料的蠕变机理为基体和增强体之间的载荷传递,纤维的开裂和破断是其失效的主要机制;应力为90~156 MPa时复合材料的蠕变机理为位错滑移与位错攀移共同作用.  相似文献   

7.
以平均颗粒尺寸为30nm的Al2O3颗粒作为增强相,采用全液态搅拌铸造法制备了Al2O3/AZ91D复合材料。通过光学显微分析、XRD衍射分析、SEM扫描和EDS能谱分析、硬度测试等检测手段对复合材料的显微组织和性能进行了研究。研究结果表明:由于初生相α-Mg在Al2O3颗粒表面非均质形核及Al2O3颗粒阻碍α-Mg相生长的双重作用使Al2O3/AZ91D复合材料的晶粒得到了明显细化,而且复合材料的硬度明显高于AZ91D合金,并随着Al2O3颗粒加入量的增加,其复合材料的硬度不断提高。  相似文献   

8.
采用挤压浸渗法制备Al_2Or_3-SiO_2/AZ91D复合材料.改进制备工艺,利用价格低廉且来源广泛的硅酸铝短纤维作增强体,用磷酸铝作黏结剂制得预制体.在预制体温度660℃、模具温度560℃、浇注温度760℃和压力30~50MPa下,通过挤压浸渗工艺制备AZ91D镁基复合材料.采用光学显微分析、XRD衍射分析、SEM扫描分析等方法研究该复合材料.结果表明,镁与磷酸铝黏结剂反应后在界面上生成一定数量的Mgo颗粒和少量的MgAl_2O_4颗粒,致使硅酸铝增强纤维和镁合金基体之间形成较强界面结合.复合材料组织致密、无明显孔洞及夹杂等铸造缺陷.其界面上的反应产物主要有MgO、MgP_4、MgAl_2O_4和Mg_2Si  相似文献   

9.
采用搅拌铸造法制备SiC体积分数为5%、10%和15%的颗粒增强AZ91镁基复合材料(SiCp/AZ91)。复合材料经过T4处理后,于350°C以固定挤压比12:1进行热挤压。在铸态复合材料中,颗粒在晶间微观区域发生偏聚。热挤压基本上消除了这种偏聚并有效地改善颗粒分布。另外,热挤压有效地细化基体的晶粒。结果表明:热挤压明显提高复合材料的力学性能。在挤压态复合材料中,随着SiC颗粒含量的升高,基体的晶粒尺寸减小,强度和弹性模量升高,但是伸长率降低。  相似文献   

10.
为了推动半固态加工在镁基复合材料成形中的应用,采用液态浸渗法制备了增强体体积分数为5%的Al2O3sf/AZ91D复合材料,并采用等径角挤压对其实施变形。利用光学显微镜、扫描电镜和拉伸实验机分别对试样进行了组织观察和力学性能测试,并以此为基础探讨了复合材料在等径角挤压过程中的变形机制。研究表明:Al2O3sf/AZ91D 1道次挤压后,其基体是剪切变形后动态再结晶组织;当试样存在缺陷时,试样的变形机制除剪切变形外,同时还存在压缩变形;在等径角挤压过程中,由于试样在模具转角处的不均匀变形使得铸造缺陷消除的同时也产生了新的缺陷(裂纹)。因此,在等径角挤前应对复合材料进行密实变形,或采用低压浸渗和高压凝固复合技术,以消除制备过程中产生的铸造缺陷。  相似文献   

11.
采用粉末冶金法制备了不同配比的Si Cw/AZ91镁基复合材料,并研究了其显微组织和力学性能。结果表明,加入适量的SiCw后,SiCw弥散分布在晶界上,有效提高了镁基复合材料的强度和硬度。  相似文献   

12.
纳米SiC颗粒增强AZ91D复合材料的制备及性能   总被引:2,自引:0,他引:2  
利用高能超声辅助法制备纳米SiC颗粒(n-SiCp)增强AZ91D镁基复合材料(n-SiCp/AZ91D),并对其显微结构和室温力学性能进行测试分析。结果表明:纳米SiC颗粒的加入能够起到细化晶粒的作用,纳米颗粒在基体中的分布比较均匀,超声波辅助技术能够有效地分散纳米颗粒,在重力铸造下所制备的复合材料的抗拉强度、屈服强度和硬度均高于基体,尤其是屈服强度较基体提高了57%。  相似文献   

13.
采用熔铸法制备了Al3Tip体积分数分别为4%和8%的AZ91D复合材料,研究了其显微组织和物相,测试了其致密度、硬度及磨损性能。结果表明,复合材料组织致密,原位内生的Al3Ti颗粒尺寸细小,呈球形且在基体中分布较均匀,与基体结合紧密;随Al3Ti体积分数的增加复合材料的致密度降低,硬度升高,但其耐磨性反而有所降低。与基体AZ91D合金相比,Al3Tip/AZ91D基复合材料的硬度和耐磨性均得到明显提高。  相似文献   

14.
n-SiC_p/AZ91D镁基复合材料高温力学性能   总被引:1,自引:1,他引:0  
采用机械搅拌和高能超声处理法制备了n-SiCp/AZ91D镁基复合材料,测试了复合材料的室温及高温力学性能。结果表明,n-SiCp的加入能显著提高复合材料的高温力学性能,当n-SiCp加入量为1.5%时,复合材料的抗拉强度和伸长率都达到最大值。随着温度的升高,复合材料的强度降低,伸长率增加。断口形貌观察表明,复合材料的断裂方式由室温下的准解理断裂转变为高温下的韧性断裂。  相似文献   

15.
在磷酸盐体系电解液中,对20%(体积分数)硅酸铝短纤维(Al2O3-SiO2)增强AZ91D镁基复合材料进行微弧氧化表面处理获得陶瓷层。利用扫描电子显微镜(SEM)和X射线衍射(XRD)仪分析陶瓷层的表面形貌、截面组织和相组成,采用动电位极化和电化学阻抗谱(EIS)测试评价微弧氧化陶瓷层的电化学腐蚀性能。结果表明,该陶瓷层主要由MgO和MgAl2O4相组成。陶瓷层的腐蚀电流密度比镁基复合材料基体低3个数量级,电化学阻抗大幅升高,耐腐蚀性能明显高于复合材料基体  相似文献   

16.
采用搅拌铸造法制备了不同尺寸的SiCP增强AZ91D镁基复合材料,并对其显微组织和力学性能进行了研究。结果表明,当SiCp加入量为2%,SiC颗粒尺寸为0.5μm时,SiCp/AZ91D镁基复合材料晶粒细小,分布均匀。复合材料的抗拉强度达到150.6 MPa,与AZ91D基体相比提高了57.6%,但伸长率有所降低。  相似文献   

17.
采用表面熔渗技术在AZ91D镁合金浇注过程中同步形成了富Al表面熔渗层,并对熔渗层的厚度、微观组织和微区成分进行了分析。结果表明,镁合金表面富Al熔渗层与基体组织为冶金结合;随模具表面Al粉涂敷层厚度的增加,镁合金表面熔渗层逐渐变得连续、致密,且厚度也不断增加,但对各微区化学成分影响较小;镁合金表面熔渗层中Al含量从表面向内部逐渐降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号