首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Inhibition of the nuclear export of poly(A)-containing mRNAs caused by the influenza A virus NS1 protein requires its effector domain. Here, we demonstrate that the NS1 effector domain functionally interacts with the cellular 30 kDa subunit of CPSF, an essential component of the 3' end processing machinery of cellular pre-mRNAs. In influenza virus-infected cells, the NS1 protein is physically associated with CPSF 30 kDa. Binding of the NS1 protein to the 30 kDa protein in vitro prevents CPSF binding to the RNA substrate and inhibits 3' end cleavage and polyadenylation of host pre-mRNAs. The NS1 protein also inhibits 3' end processing in vivo, and the uncleaved pre-mRNA remains in the nucleus. Via this novel regulation of pre-mRNA 3' end processing, the NS1 protein selectively inhibits the nuclear export of cellular, and not viral, mRNAs.  相似文献   

3.
Regulation of polyadenylation efficiency at the secretory poly(A) site plays an essential role in gene expression at the immunoglobulin (IgM) locus. At this poly(A) site the consensus AAUAAA hexanucleotide sequence is embedded in an extended AU-rich region and there are two downstream GU-rich regions which are suboptimally placed. As these sequences are involved in formation of the polyadenylation pre-initiation complex, we examined their function in vivo and in vitro . We show that the upstream AU-rich region can function in the absence of the consensus hexanucleotide sequence both in vivo and in vitro and that both GU-rich regions are necessary for full polyadenylation activity in vivo and for formation of polyadenylation-specific complexes in vitro . Sequence comparisons reveal that: (i) the dual structure is distinct for the IgM secretory poly(A) site compared with other immunoglobulin isotype secretory poly(A) sites; (ii) the presence of an AU-rich region close to the consensus hexanucleotide is evolutionarily conserved for IgM secretory poly(A) sites. We propose that the dual structure of the IgM secretory poly(A) site provides a flexibility to accommodate changes in polyadenylation complex components during regulation of polyadenylation efficiency.  相似文献   

4.
It was previously shown that three distinct but interdependent elements are required for 3' end formation of mRNA in the yeast Saccharomyces cerevisiae: (i) the efficiency element TATATA and related sequences, which function by enhancing the efficiency of positioning elements; (ii) positioning elements, such as TTAAGAAC and AAGAA, which position the poly(A) site; and (iii) the actual site of polyadenylation. In this study, we have shown that several A-rich sequences, including the vertebrate poly(A) signal AATAAA, are also positioning elements. Saturated mutagenesis revealed that optimum sequences of the positioning element were AATAAA and AAAAAA and that this element can tolerate various extents of replacements. However, the GATAAA sequence was completely ineffective. The major cleavage sites determined in vitro corresponded to the major poly(A) sites observed in vivo. Our findings support the assumption that some components of the basic polyadenylation machinery could have been conserved among yeasts, plants, and mammals, although 3' end formation in yeasts is clearly distinct from that of higher eukaryotes.  相似文献   

5.
A study of the cis-acting elements involved in the 3' end formation of the RNAs from the major late L4 family of adenovirus-2 was undertaken. Series of 5' or 3' end deletion mutants and mutants harboring either internal deletions or substitutions were prepared and assayed for in vitro cleavage. This first allowed the demonstration of a sequence, located at -6 to -29, relative to AAUAAA, whose deletion or substitution reduces cleavage efficiency at the L4 polyadenylation site two to three fold. This upstream efficiency element 5' AUCUUUGUUGUC/AUCUCUGUGCUG 3' is constituted of a partially repeated 12 nucleotide long, UCG rich sequence. The activities of the 2 sequence elements in cleavage are additive. We also searched for regulatory sequences downstream of the L4 polyadenylation site. We found that the deletion or substitution of a 30 nucleotide long UCG rich sequence, between nucleotides +7 and +35 relative to the cleavage site and harboring a UCCUGU repeat reduces cleavage efficiency at least ten fold. A GUUUUU sequence, starting at +35 had no influence. Thus, the usage of the L4 polyadenylation site requires down-stream sequences different from the canonical GU or U boxes and is regulated by upstream sequence elements.  相似文献   

6.
The maturation of IgM-expressing B cells to IgM-secreting plasma cells is associated with both an increase in mu mRNA and the ratio of secreted to membrane forms of mu mRNA. In contrast, previous studies demonstrated that in vitro the secreted form of alpha mRNA (alpha s mRNA) predominates regardless of the stage of B cell differentiation. The present study demonstrates that alpha s mRNA predominates in both B cells derived from the germinal centers of murine Peyer's patches and in the functional IgA memory population, suggesting that in vitro events accurately represent the generation of a secretory IgA response in vivo. Although the predominant usage of the alpha s poly(A) site is due to RNA processing, it does not depend on either the alpha s poly(A) site, the 3' splice site associated with the exon encoding the membrane exon of IgA (alphaM) or the alphaM poly(A) sites. Analysis of the sequence of the intron between the alpha s terminus and alphaM (alpha s-alphaM intron) demonstrates the existence of several potential regulatory elements. Furthermore, the effects of deletions within the alpha s-alphaM intron on 3' terminus usage demonstrate that the predominant usage of the proximal terminus is not strictly dependent on the length of the intron. Together with previous work, these observations support the idea that choice of 3' terminus for all Ig heavy chain genes is regulated by a similar mechanism, but specific sequences within a heavy chain gene can impinge upon that mechanism.  相似文献   

7.
A conserved 3' splice site YAG is essential for the second step of pre-mRNA splicing but no trans-acting factor recognizing this sequence has been found. A direct, non-Watson-Crick interaction between the intron terminal nucleotides was suggested to affect YAG selection. The mechanism of YAG recognition was proposed to involve 5' to 3' scanning originating from the branchpoint or the polypyrimidine tract. We have constructed a yeast intron harbouring two closely spaced 3' splice sites. Preferential selection of a wild-type site over mutant ones indicated that the two sites are competing. For two identical sequences, the proximal site is selected. As previously observed, an A at the first intron nucleotide spliced most efficiently with a 3' splice site UAC. In this context, UAA or UAU were also more efficient 3' splice sites than UAG and competed more efficiently than the wild-type sequence with a 3' splice site UAC. We observed that a U at the first intron nucleotide is used for splicing in combination with 3' splice sites UAG, UAA or UAU. Our data indicate that the 3' splice site is not primarily selected through an interaction with the first intron nucleotide. Selection of the 3' splice site depends critically on its distance from the branchpoint but does not occur by a simple leaky scanning mechanism.  相似文献   

8.
9.
10.
Early/memory and plasma B-cell lines and fibroblasts were analyzed for their ability to use a 5' proximal (variant) versus a 3' distal (constant) poly(A) site, in the absence of a competing splice, from a set of related constructs. The proximal:distal poly(A) site use (P:D ratio) of the resulting cytoplasmic poly(A)+ mRNA is a measure of poly(A) site strength. In this context the immunoglobulin gamma2b secretory-specific poly(A) site showed a P:D ratio of 1:1 in plasma cells, 0.43:1 in early/memory B-cells and an intermediate value in fibroblasts. Meanwhile, a construct with a proximal SV40 early-like poly(A) site produced mRNA with a P:D ratio of >50:1 in all cell types. Alterations in the region downstream of the proximal poly(A) addition site and at the site itself resulted in changes in the P:D ratio. However, these poly(A) sites, all with a P:D ratio of < or = 5:1, were used most efficiently in plasma cells. Constructs totally devoid of immunoglobulin sequences, but containing heterologous poly(A) sites producing mRNA with P:D ratios of < or = 5:1, were also used more efficiently in plasma cells. We therefore conclude that weak poly(A) sites, regardless of sequence composition, are used more efficiently in plasma cells than in the other cell types.  相似文献   

11.
During the development of mouse B cells there is a regulated shift from the production of membrane (mb) to secretory-specific (sec) forms of immunoglobulin (Ig) mRNA. The mRNAs are produced from one gene that is alternatively processed at the 3' end. We have previously shown that there is an increase in polyadenylation efficiency accompanying the developmentally regulated shift to secretory-specific forms of Ig mRNA by DNA transfection experiments (1). When we look in vitro at nuclear extracts prepared from early/memory versus late stage/plasma B cells, we see cell stage-specific differences in the proteins which are crosslinked to poly(A) site-containing RNAs. Here we show that one of these proteins is the mouse homologue of 100 kDa subunit of Hela CPSF by immunoprecipitation and Western analysis of UV crosslinked material. The amount of 100 kDa protein and its mobility on two-dimensional gels do not change between the B cell stages. However, the binding of the 100 kDa polypeptide to poly(A) sites increases in the late stage/plasma cell lines relative to the binding seen in early/memory cell lines. The increased binding may reflect an increase in polyadenylation efficiency at the sec poly(A) site in plasma cells versus early/memory cells seen in vivo.  相似文献   

12.
Psoralen cross-linking experiments in HeLa cell nuclear extracts have revealed the binding of U1 snRNA to substrates containing the SV40 late and adenovirus L3 polyadenylation signals. The sites of U1 cross-linking to the substrates map different distances upstream of the AAUAAA sequence to regions with limited complementarity to the 5' end of U1 snRNA. U1 cross-linking to the same site in the SV40 late pre-mRNA is enhanced by the addition of an upstream 3' splice site, which also enhances polyadenylation. Examination of different nuclear extracts reveals a correlation between U1 cross-linking and the coupling of splicing and polyadenylation, suggesting that the U1 snRNP participates in the coordination of these two RNA-processing events. Mutational analyses demonstrate that U1/substrate association cannot be too strong for coupling to occur and suggest that the U1 snRNP plays a similar role in recognition of internal and 3' terminal exons. Possible mechanisms for communication between the splicing and polyadenylation machineries are discussed, as well as how interaction of the U1 snRNP with 3' terminal exons might contribute to mRNA export.  相似文献   

13.
We previously identified distal and proximal arginine residues in the N-terminal portion and an aromatic amino acid at position 1 (P1' site3) relative to the cleavage site as important recognition signals in substrates of mitochondrial processing peptidase [Niidome, T., Kitada, S., Shimokata, K., Ogishima, T., and Ito, A. (1994) J. Biol. Chem. 269, 24714-24722; Ogishima, T., Niidome, T., Shimokata, K., Kitada, S., and Ito, A. (1995) ibid. 270, 30322-30326]. To further elucidate the elements required for the specific recognition and cleavage by the enzyme, we synthesized synthetic peptides that possessed only the distal and proximal arginine residues and phenylalanine at the P1' site in a poly alanine sequence, and analyzed the processing reaction toward them. They were not cleaved by the peptidase although they inhibited the peptidase activity. However, when serine was introduced into the C-terminal portions of the sequence, processing was observed. The efficiency of the resultant peptides improved as the number of serine residues was increased. A peptide with serine or histidine at P2' and threonine at P3' was processed most efficiently. These results indicate that the processing reaction catalyzed by the peptidase depends not only on the N-terminal portion but also on the C-terminal portion from the cleavage site in the substrates.  相似文献   

14.
15.
16.
17.
18.
19.
Insulin-like growth factor-II (IGF-II) mRNAs are subject to site-specific endonucleolytic cleavage in the 3' untranslated region (UTR), rendering an unstable 5' cleavage product containing the coding region and a very stable 3' cleavage product of 1.8 kb consisting of the 3'-UTR sequence and the poly(A) tail. Previously, it was established that two widely separated elements in the 3'-UTR (elements I and II), that can form a duplex structure, are necessary and sufficient for cleavage. To further investigate the sequence and secondary structure requirements for cleavage, we have introduced a number of mutations around the cleavage site and assayed their effects on cleavage. Several recognition determinants involved in the endonucleolytic cleavage of IGF-II mRNAs were identified. Mutational analysis around the cleavage site revealed that cleavage is sequence specific and that the cleavage site must be in a single-stranded conformation to allow efficient cleavage. In addition, we have identified an accessory protein that specifically interacts with a stem-loop structure located 133 to 73 nt upstream of the cleavage site.  相似文献   

20.
Communication between the 5' and 3' ends is a common feature of several aspects of eukaryotic mRNA metabolism. In the nucleus, the pre-mRNA 5' end is bound by the nuclear cap binding complex (CBC). This RNA-protein complex plays an active role in both splicing and RNA export. We provide evidence for participation of CBC in the processing of the 3' end of the message. Depletion of CBC from HeLa cell nuclear extract strongly reduced the endonucleolytic cleavage step of the cleavage and polyadenylation process. Cleavage was restored by addition of recombinant CBC. CBC depletion was found to reduce the stability of poly(A) site cleavage complexes formed in nuclear extract. We also provide evidence that the communication between the 5' and 3' ends of the pre-mRNA during processing is mediated by the physical association of the CBC/cap complex with 3' processing factors bound at the poly(A) site. These observations, along with previous data on the function of CBC in splicing, illustrate the key role played by CBC in pre-mRNA recognition and processing. The data provides further support for the hypothesis that pre-mRNAs and mRNAs may exist and be functional in the form of "closed-loops," due to interactions between factors bound at their 5' and 3' ends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号