首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of B2O3 on the sintering temperature and microwave dielectric properties of Ba5Nb4O15 has been investigated using X-ray powder diffraction, scanning electron microscopy, and a network analyzer. Interactions between Ba5Nb4O15 and B2O3 led to formation of second phases, BaNb2O6 and BaB2O4. The addition of B2O3 to Ba5Nb4O15 resulted in lowering the sintering temperature from 1400° to 925°C. Low-fired Ba5Nb4O15 could be interpreted by measuring changes in the quality factor ( Q × f ), the relative dielectric constant (ɛr), and the temperature coefficient of resonant frequency (τf) as a function of B2O3 additions. More importantly, the formation of BaNb2O6 provided temperature compensation. The microwave dielectric properties of low-fired Ba5Nb4O15 had good dielectric properties: Q × f = 18700 GHz, ɛr= 39, and τf= 0 ppm/°C.  相似文献   

2.
The microwave dielectric properties of two A-site-deficient perovskite-type ceramics in the La6Mg4A2W2O24 [A=Ta and Nb] system were investigated. The compounds were synthesized by the solid-state ceramic route. The structure and microstructure were analyzed using X-ray diffraction and scanning electron microscopy techniques. The dielectric properties were measured in the microwave frequency range [4–6 GHz] by the resonance method. La6Mg4Ta2W2O24 had Q u× f =13 600 GHz, ɛr=25.2, and τf=−45 ppm/°C and La6Mg4Nb2W2O24 had Q u× f =16 400 GHz, ɛr=25.8, and τf=−56 ppm/°C.  相似文献   

3.
(1− x )ZnNb2O6· x TiO2 ceramics were prepared using both anatase and rutile forms of TiO2. At a composition of x = 0.58, a mixture region of ixiolite (ZnTiNb2O8) and rutile was observed and the temperature coefficient of resonant frequency (τf) was ∼0 ppm/°C. We found that although ɛr and τf were comparable, the quality factor ( Q × f , Q ≈ 1/ tan δ, f = resonant frequency) of 0.42ZnNb2O6·0.58TiO2 prepared from anatase and rutile was 6000 and 29 000, respectively. The origin of the difference in Q × f of both samples was investigated by measuring electrical conductivity and by analysis of the anatase–rutile phase transition. The anatase-derived sample had higher conductivity, which was related to the reduction of Ti4+. It is suggested that the increase of dielectric loss originates from an increase in Ti3+ and oxygen vacancies due to an anatase–rutile phase transition.  相似文献   

4.
The effects of substituting Nb5+ with Ta5+ on the microwave dielectric properties of the ZnNb2O6 ceramics were investigated in this study. The forming of Zn(Nb1− x Ta x )2O6 ( x =0–0.09) solid solution was confirmed by the measured lattice parameters and the EDX analysis. By increasing x , not only could the Q × f of the Zn(Nb1− x Ta x )2O6 ( x =0–0.09) solid solution be tremendously boosted from 83 600 GHz at x =0 to a maximum 152 000 GHz at x =0.05, the highest ɛr∼24.6 could also be achieved simultaneously. It was mainly due to the uniform grain morphology and the highest relative density of the specimen. A fine combination of microwave dielectric properties (ɛr∼24.6, Q × f ∼152 000 GHz at 8.83 GHz, τf∼–71.1 ppm/°C) was achieved for Zn(Nb0.95Ta0.05)2O6 solid solution sintered at 1175°C for 2 h.  相似文献   

5.
Re3Ga5O12 (Re: Nd, Sm, Eu, Dy, Yb, and Y) garnet ceramics were synthesized and their microwave dielectric properties were investigated for advanced substrate materials in microwave integrated circuits. The Re3Ga5O12 ceramics sintered at 1350°–1500°C had a high-quality factor ( Q × f ) ranging from 40 000 to 192 173 GHz and a low-dielectric constant (ɛr) of between 11.5 and 12.5. They also exhibited a relatively stable temperature coefficient of resonant frequency (τf) in the range of −33.7 to −12.4 ppm/°C. In particular, the Sm3Ga5O12 ceramics sintered at 1450°C exhibited good microwave dielectric properties of ɛr=12.4, Q × f =192 173 GHz, and τf=−19.2 ppm/°C.  相似文献   

6.
The columbites MgNb2O6, MgTa2O6, and corundum-type Mg4Nb2O9 ceramics were prepared by the conventional solid-state ceramic route. The structure and microstructure of the sintered samples were investigated by X-ray diffraction and scanning electron microscopic techniques. The microwave dielectric properties of the samples were measured by the resonance method in the frequency range 4–6 GHz. The dielectric properties have been tailored by forming a solid solution between MgNb2O6 and MgTa2O6 and by the substitution of TiO2 for Nb2O5 in both MgNb2O6 and Mg4Nb2O9 ceramics. The Mg(Nb0.7Ta1.3)O6 has ɛr=29, Q u× f =67 800 GHz, and τf=0.8 ppm/°C and the MgO–(0.4)Nb2O5–(1.5)TiO2 composition has ɛr=34.5, Q u× f =81 300 GHz, and τf=−2 ppm/°C.  相似文献   

7.
BaCu(B2O5) ceramics were synthesized and their microwave dielectric properties were investigated. BaCu(B2O5) phase was formed at 700°C and melted above 850°C. The BaCu(B2O5) ceramic sintered at 810°C had a dielectric constant (ɛr) of 7.4, a quality factor ( Q × f ) of 50 000 GHz and a temperature coefficient of resonance frequency (τf) of −32 ppm/°C. As the BaCu(B2O5) ceramic had a low melting temperature and good microwave dielectric properties, it can be used as a low-temperature sintering aid for microwave dielectric materials for low temperature co-fired ceramic application. When BaCu(B2O5) was added to the Ba(Zn1/3Nb2/3)O3 (BZN) ceramic, BZN ceramics were well sintered even at 850°C. BaCu(B2O5) existed as a liquid phase during the sintering and assisted the densification of the BZN ceramic. Good microwave dielectric properties of Q × f =16 000 GHz, ɛr=35, and τf=22.1 ppm/°C were obtained for the BZN+6.0 mol% BaCu(B2O5) ceramic sintered at 875°C for 2 h.  相似文献   

8.
The microwave dielectric properties and the microstructures of Nd(Co1/2Ti1/2)O3 (NCT) ceramics using starting powders of Nd2O3, CoO, and TiO2 prepared by the conventional solid-state route have been researched. The dielectric constant values (ɛr) saturated at 24.8–27. Quality factor ( Q × f ) values of 37 900–140 000 (at 9 GHz) and the measured τf values ranging from −45 to −48 ppm/°C can be obtained when the sintering temperatures are in the range of 1410°–1500°C. The ɛr value of 27, the Q × f value of 140 000 (at 9 GHz) and the τf value of −46 ppm/°C were obtained for NCT ceramics sintered at 1440°C for 4 h. For applications of high selective microwave ceramic resonator, filter, and antenna, NCT is proposed as a suitable material candidate.  相似文献   

9.
A Zn2Te3O8 ceramic was investigated as a promising dielectric material for low-temperature co-fired ceramics (LTCC) applications. The Zn2Te3O8 ceramic was synthesized using the solid-state reaction method by sintering in the temperature range 540°–600°C. The structure and microstructure of the compounds were investigated using X-ray diffraction (XRD) and scanning electron microscopy methods. The dielectric properties of the ceramics were studied in the frequency range 4–6 GHz. The Zn2Te3O8 ceramic has a dielectric constant (ɛr) of 16.2, a quality factor ( Q u× f ) of 66 000 at 4.97 GHz, and a temperature coefficient of resonant frequency (τf) of −60 ppm/°C, respectively. Addition of 4 wt% TiO2 improved the τf to −8.7 ppm/°C with an ɛr of 19.3 and a Q u× f of 27 000 at 5.14 GHz when sintered at 650°C. The chemical reactivity of the Zn2Te3O8 ceramic with Ag and Al metal electrodes was also investigated.  相似文献   

10.
The effects of V2O5 addition on the sintering behavior, microstructure, and the microwave dielectric properties of 5Li2O–0.583Nb2O5–3.248TiO2 (LNT) ceramics have been investigated. With addition of low-level doping of V2O5 (≤2 wt%), the sintering temperature of the LNT ceramics could be lowered down to around 920°C due to the liquid phase effect. A secondary phase was observed at the level of 2 wt% V2O5 addition. The addition of V2O5 does not induce much degradation in the microwave dielectric properties but lowers the τf value to near zero. Typically, the excellent microwave dielectric properties of ɛr=21.5, Q × f =32 938 GHz, and τf=6.1 ppm/°C could be obtained for the 1 wt% V2O5-doped sample sintered at 920°C, which is promising for application of the multilayer microwave devices using Ag as an internal electrode.  相似文献   

11.
This paper details the investigation of the quality factor ( Q ), dielectric permittivity (ɛr) and temperature coefficient of resonant frequency (τf) of the TE01δ mode of the columbite binary niobate ceramics, with the formula MNb2O6 where M=2+ cation, in relation to their degree of sintering, microstructure and phase composition. The ceramics were made from a mixed oxide preparative route and fired over a range of temperatures from 800° to 1400°C, and most formed the columbite structure. A comprehensive study was made of the niobates containing the transition metal cations M=Mn2+, Co2+, Ni2+, Cu2+, and Zn2+, and the group II metal cations M=Mg2+, Ca2+, Sr2+, and Ba2+. All columbite niobates were found to have ɛr between 17 and 22 and negative τf values between –45 and –76 ppm/°C, and ZnNb2O6, MgNb2O6, CaNb2O6, and CoNb2O6 had high Q f values of 84 500, 79 600, 49 600, and 41 700 GHz, respectively. The Q f of MgNb2O6 was found to rise to over 95 000 GHz when heated at 1300°C for 50 h.  相似文献   

12.
The microwave dielectric properties and microstructures of compounds in the solid solution series x BaTiO3–(1− x )La(Mg1/2Ti1/2)O3 (BTLMT) have been investigated. The structural phase transitions that occur as a function of x have been studied and are related to changes in the dielectric properties. For compounds where x ≤ 0.1, X-ray diffraction (XRD) showed evidence of 1:1 ordering between Mg and Ti cations. For x ≤ 0.3, XRD and electron diffraction revealed that compounds were tilted in both antiphase and in-phase. However, for 0.3 < x < 0.7, only antiphase tilting was present. The temperature coefficient of resonant frequency (τf) vs the relative permittivity (ɛr) was linear until x = 0.5 at which point in the solid solution the transition to a nontilted structure resulted in nonlinear behavior. τf values close to zero (−2 ppm/°C) were achieved at x = 0.5 (ɛr∼ 60), which had a quality factor ( Q · f o) of 9600 GHz.  相似文献   

13.
The effect of a bespoke glass sintering aid, 0.3Bi2O3–0.3Nb2O5–0.3B2O3–0.1SiO2 (BN1), developed from the base ceramic composition, BiNbO4 (BN), on the sinterability, microstructure, and microwave (MW) dielectric properties of BN ceramics has been investigated. Densities >97% theoretical could be achieved at 1020°C for samples with up to 15% BN1 additions. The resulting microstructure was composed of BN laths surrounded by a residual glass phase that contained small fibrous crystals. Some evidence of dissolution of BN crystals was observed. Optimum properties were exhibited for samples with 15 wt% of glass addition sintered for 4 h at 1020°C with a relative permittivity ɛr=38, a MW quality factor Q × f 0=17 353 at 5.6 GHz, and a temperature coefficient of resonant frequency τf=−10 ppm/°C. The high Q × f 0, ɛr, and low τf, coupled with a relatively low sintering temperature, suggest that the use of bespoke glass sintering aids of this type may have great potential for the fabrication of MW ceramics.  相似文献   

14.
The effect of CuO additions on the firing temperature of ZnNb2O6 ceramics was investigated using dilatometry, transmission electron microscopy, and X-ray diffractometry. A 5 wt% CuO addition to ZnNb2O6 ceramics significantly lowered the firing temperature from 1150° to ∼900°C. The presence of a CuO-rich intergranular phase in the specimen was observed and was evidence of the formation of a liquid phase during sintering. The composition of the liquid phase was (ZnCu2)Nb2O8. In particular, the low-fired ZnNb2O6 ceramics had good microwave dielectric characteristics— Q × f = 59 500, ɛr= 22.1, τf=–66 ppm/oC. These properties were correlated with the formation of a second phase, (ZnCu2)Nb2O8.  相似文献   

15.
The sintering behavior and dielectric properties of Bi3NbO7 ceramics prepared by the high-energy ball milling (HEM) method and conventional mixed oxides method with V2O5 addition were investigated. All the samples were sintered between 840° and 960°C. For the ceramics prepared by the mixed oxides method, the pure tetragonal Bi3NbO7 phase formed without any cubic phase. With changing sintering temperature, the dielectric constant ɛr lies between 79 and 92, while the Q × f values are between 300 and 640 GHz. The samples sintered at 870°C have the best microwave dielectric properties with ɛr=79, Q × f =640 GHz, and the temperature coefficients of resonant frequency τf between 0 and −20 ppm/°C. For the ceramics prepared by the HEM, a pure cubic phase was obtained. The ɛr changes between 78 and 80 and Q × f were between 200 and 290 GHz.  相似文献   

16.
The microwave dielectric properties of the (1− x )CaTiO3– x Ca(Zn1/3Nb2/3)O3 ceramic system have been investigated. The ceramic samples sintered at 1300°–1450°C for 4 h in air exhibit orthorhombic pervoskite and form a complete solid solution for different x value. When the x value increased from 0.2 to 0.8, the permittivity ɛr decreased from 115 to 42, the unloaded quality factor Q × f increased from 5030 to 13 030 GHz, and the temperature coefficient τf decreased from 336 to −28 ppm/°C. When x =0.7, the best combination of dielectric properties, a near zero temperature coefficient of resonant frequency of τf∼−6 ppm/°C, Q × f ∼10 860 GHz and ɛr∼51 is obtained.  相似文献   

17.
(Ni1− x Zn x )Nb2O6, 0≤ x ≤1.0, ceramics with >97% density were prepared by a conventional solid-state reaction, followed by sintering at 1200°–1300°C (depending on the value of x ). The XRD patterns of the sintered samples (0≤ x ≤1.0) revealed single-phase formation with a columbite ( Pbcn ) structure. The unit cell volume slightly increased with increasing Zn content ( x ). All the compositions showed high electrical resistivity (ρdc=1.6±0.3 × 1011Ω·cm). The microwave (4–5 GHz) dielectric properties of (Ni1− x Zn x )Nb2O6 ceramics exhibited a significant dependence on the Zn content and to some extent on the morphology of the grains. As x was increased from 0 to 1, the average grain size monotonically increased from 7.6 to 21.2 μm and the microwave dielectric constant (ɛ'r) increased from 23.6 to 26.1, while the quality factors ( Q u× f ) increased from 18 900 to 103 730 GHz and the temperature coefficient of resonant frequency (τf) increased from −62 to −73 ppm/°C. In the present work, we report the highest observed values of Q u× f =103 730 GHz, and ɛ'r=26.1 for the ZnNb2O6-sintered ceramics.  相似文献   

18.
The microwave dielectric properties and the microstructures of Nd(Zn1/2Ti1/2)O3 (NZT) ceramics prepared by the conventional solid-state route have been studied. The prepared NZT exhibited a mixture of Zn and Ti showing 1:1 order in the B-site. The dielectric constant values (ɛr) saturated at 29.1–31.6. The quality factor ( Q × f ) values of 56 700–170 000 (at 8.5 GHz) can be obtained when the sintering temperatures are in the range of 1300°–1420°C. The temperature coefficient of resonant frequency τf was not sensitive to the sintering temperature. The ɛ r value of 31.6, the Q × f value of 170 000 (at 8.5 GHz), and the τf value of −42 ppm/°C were obtained for NZT ceramics sintering at 1330°C for 4 h. For applications of high selective microwave ceramic resonators, filters, and antennas, NZT is proposed as a suitable material candidate.  相似文献   

19.
Dolomite-type borate ceramics consisting of CaZrB2O6 were synthesized via a conventional solid-state reaction route; low-temperature sintering was explored using Bi2O3–CuO additives of 1–7 wt% for low-temperature co-fired ceramics applications. For several sintering temperatures, the microwave dielectric properties and chemical resistance of the ceramics were investigated. The CaZrB2O6 ceramics with 3 wt% Bi2O3–CuO addition could be sintered below 925°C, and the microwave dielectric properties of the low-temperature samples were ɛr=10.55, Q × f =87,350 GHz, and τf=+2 ppm/°C. The chemical resistance test result showed that both CaZrB2O6- and Bi2O3–CuO-added CaZrB2O6 ceramics were durable in basic solution but were degraded in acid solution.  相似文献   

20.
The La5CrTi3O15 and La4MCrTi3O15 (M=Pr, Nd, and Sm) microwave dielectric ceramics were prepared by the conventional solid-state ceramic route. The structure and microstructure of the ceramics were studied by X-ray diffraction and scanning electron microscopy methods. The dielectric properties of the ceramics were measured in the microwave frequency region using a network analyzer by the resonance method. The ceramics show a dielectric constant (ɛr) in the range of 37 to 39.5, a quality factor ( Q u× f o) 17,300 to 34,000 GHz, and a temperature coefficient of resonant frequency (τf) in the range from −22 to −38 ppm/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号