首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transition to a low carbon energy portfolio necessitates a reduction in the demand of fossil-fuel and an increase in renewable energy generation and penetration. Wind energy in particular is ubiquitous, yet the stochastic nature of wind energy hinders its wide-spread adoption into the electric grid. Numerous techniques (improved wind forecasting, improved wind turbine design and improved power electronics) have been proposed to increase the penetration of wind energy, yet only a few have addressed the challenges of wind intermittency, grid stability and flexibility simultaneously. The problem of excess wind energy results in wind curtailment and has plagued large scale wind integration. NREL's HOMER software is used to show that a strong negative correlation exists between the cycles to failure of a storage device and the excess wind energy on the system. A 1 MJ magnesium-diboride superconducting magnetic energy storage (SMES) system is designed to alleviate momentary interruptions (lasting from a few milli-seconds to a few minutes) in wind turbines. The simulation results establish the efficacy of SMES coupled with wind turbines improve output power quality and show that a 1 MJ SMES alleviated momentary interruptions for ∼50 s in 3 MW wind turbines. These studies suggest that SMES when coupled to wind turbines could be ideal storage devices that improve wind power quality and electric grid stability.  相似文献   

2.
Wind resource assessment of the Jordanian southern region   总被引:1,自引:0,他引:1  
Eyad S. Hrayshat   《Renewable Energy》2007,32(11):1948-1960
Wind data in terms of annual, seasonal and diurnal variations at Queira, which is located in the southern part of Jordan was studied and analyzed. For this purpose, long-term wind speed data for a period of 12 years (1990–2001) was used. The analysis showed that the seasonal and diurnal pattern of wind speed matches the electricity load pattern of the location. Higher winds of the order of 6 m/s and more were observed during both the summer months of the year (May–August) and peak hours (1100–1500) of the day. The wind duration availability is discussed as the number of hours during which the wind remained in certain wind speed intervals. The possibility of electricity generation from wind power at Queira was carried out using three different wind energy systems of sizes 100, 22 kW rated power, and a wind farm consisting of 25 small wind turbines; each of 4 kW rated power with hub heights of 20, 30, and 40 m. The energy production analysis showed higher production from the wind farm with a 20 m hub height than the production from the other two wind turbines. Similarly, the cost analysis showed that the lowest generation costs of 1 kWh were obtained for the wind farm compared to the other two wind turbines. The possibility of water pumping using the wind farm was also investigated. The results showed that water pumping using wind turbines is an appropriate alternative for the photovoltaic water pumping in the region.  相似文献   

3.
A technical and economic assessment has been made of the generation of electricity using wind turbines at one of the most promising wind sites in Egypt: Hurghada. In this paper, we used wind data recorded over 23 years for this site. The WASP program was used to calculate the values of wind speed frequency for the station, their seasonally values have been estimated and compared with measured data.Weibull parameters and the power law coefficient (n) for all seasons at different heights (10–70 m) has been estimated and used to describe the distribution and behavior of seasonal wind speed and their frequencies at Hurghada. The monthly and annual values of wind potential at a height of 70 m were obtained by extrapolation of the 10 m data from the results of our previous article [Ahmed Shata AS, Hanitsch R. The potential of electricity generation on the east coast of Red Sea in Egypt. Renew Energy 2006;31:1597–615] using the power law.Also, the monthly plant load factor (PLF) has been estimated, which is used to determine the expected annual energy output of a wind energy conversion system (WECS).Variation of annual capacity factor with rated wind speed for 10 different wind turbines has been studied. The lower the rated speed for the WECS of the same height, the higher will be the capacity factor values. The expected electrical energy cost of kWh produced by the wind turbine (Repower MM82) with a capacity of 2 MW considered for Hurghada station was found to be less than 1.5 € cent/kWh.  相似文献   

4.
This paper analyses the wind speed of some major cities in province of Yazd which is located in central part of Iran. Also, the feasibility study of implementing wind turbines to take advantage of wind power is reviewed and then the subject of wind speed and wind potential at different stations is considered. This paper utilized wind speed data over a period of almost 13 years between 1992 and 2005 from 11 stations, to assess the wind power potential at these sites. In this paper, the hourly measured wind speed data at 10 m, 20 m and 40 m height for Yazd province have been statically analyzed to determine the potential of wind power generation. Extrapolation of the 10 m data, using the Power Law, has been used to determine the wind data at heights of 20 m and 40 m. The results showed that most of the stations have annual average wind speed of less than 4.5 m/s which is considered as unacceptable for installation of the wind turbines. City of Herat has higher wind energy potential with annual wind speed average of 5.05 m/s and 6.86 m/s, respectively, at height of 10 m and 40 m above ground level (AGL). This site is a good candidate for remote area wind energy applications. But some more information is required, because the collected data for Herat is only for 2004. Cities of Aghda with 3.96 m/s, Gariz with 3.95 m/s, and Maybod with 3.83 m/s annual wind speed average at height of 10 m above ground level are also able to harness wind by installing small wind turbines. The Tabas and Bafgh sites wind speed data indicated that the two sites have lower annual wind speed averages between 1.56 m/s and 2.22 m/s at 10 m height. The monthly and annual wind speeds at different heights have been studied to ensure optimum selection of wind turbine installation for different stations in Yazd.  相似文献   

5.
The average wind speed and wind power density of Taiwan had been evaluated at 10 m, 30 m and 50 m by simulation of mesoscale numerical weather prediction model (MM5). The results showed that wind energy potential of this area is excellent. Taiwan has offered funds to encourage the founding of offshore wind farms in this area. The purpose of this study is to make a high resolution wind energy assessment for the offshore area of Taiwan west coast and Penghu archipelago by using WAsP. The result of this study has been used to the relative financial planning of offshore wind farm projects in Taiwan. The basic inputs of WAsP include wind weather data and terrain data. The wind weather data was from a monitoring station located on a remote island, Tongi, because that all of weather stations in the area of Taiwan west coast are affected by urbanization. SRTM was selected to be used as terrain data and downloaded from CGIAR-CSI for voids problem. The coverage of considered terrain area in this assessment work is about 300 km × 400 km that made some difficulties to run wind energy assessment of the whole area with a high resolution of 100 m. So the interested area of this study is divided into 19 areas for the wind energy assessment and mapping. The assessment results show the Changhua area has best wind energy potential in the area of Taiwan west coast which power density is above 1000 W/m2 height and the areas of Penghu archipelago are above 1300 W. These results are higher than the expected from NWP. 180 of 3 MW wind turbines were used in the study of micro sitting in the Changhua area.The type and number of the wind turbines and the layout of the wind farm is similar to the prior study of Taipower Company for demonstrating the reliability of this study. The assessment result of average net annual energy production (AEP) of the wind farm is about 11.3 GWh that is very close to the prior study. The terrain effect is also studied. The average net annual energy production will decrease about 0.7 GWh if the wind turbines were moved eastward 3600 m closer to the coast because of terrain effect. As the same reason, the average net annual energy production would be increased to 11.392 GWh if the wind farm is moved westward 3600 m away from the coast.  相似文献   

6.
The observed wind at a given site varies continuously as a function of time and season, increasing hub heights, topography of the terrain, prevailing weather condition etc. The quality of wind resource is one of the important site factors to be considered when assessing the wind potential of any location for any energy project. In this study, two wind energy analysis techniques are presented: the use of direct technique where the electrical power outputs of the wind turbines at a time t are estimated using the turbine power curve(s) and the use of statistical-based technique where the power outputs are estimated based on the developed site power curve(s). The wind resource assessment at Darling site is conducted using a 5-min time series weather data collected on a 10 m height over a period of 24 months. Because of the non-linearity of the site's wind speed and its corresponding power output, the wind resources are modeled and the developed site power curve(s) are used to estimate the long term energy outputs of the wind turbines for changing weather conditions. Three wind turbines rating of 1.3 MW, 1.3 MW and 1.0 MW were selected for the energy generation based on the gauged wind resource(s) at 50, 60 and 70 m heights, respectively. The energy outputs at 50 m height using the 1.3 MW WT were compared to the energy outputs at 60 m to determine the standard height for utility scale energy generation at this site. An additional energy generation of 190.71 MWh was available by deploying the same rated turbine at a 60 m height. Furthermore, comparisons were made between the use of turbine and site power curve for wind energy analysis at the considered heights. The results show that the analysis of the energy outputs of the WTs based on the site power curve is an accurate technique for wind energy analysis as compared to the turbine power curve. Conclusions are drawn on the suitability of this site for utility scale generation based on the wind resources evaluation at different heights.  相似文献   

7.
Wind power potential by itself is not a good indicator of the suitability of a region for wind power generation for different purposes. Economic attractiveness is a better indicator in this regard as it stimulates the involvement of private businesses in this sector. Naturally, the shorter is the payback period or the time required to reach profitability, the more attractive will be the project. Considering the high wind energy potential of some regions of Iran, this study evaluates the wind energy available for generating electricity as well as hydrogen by industrial and agricultural sectors in four cities of Ardebil province, namely Ardebil, Khalkhal, Namin, and Meshkinshahr, and then conducts an econometric analysis accordingly. Wind power potentials are evaluated using the energy pattern factor and Weibull distribution function based on 5-year meteorological data of the studied regions. Economic evaluations are performed based on the present worth of incomes and costs, which are estimated for two models of wind turbines with 3.5 and 100 KW rated power. Results indicate that the cities of Namin and Ardebil with wind power densities of respectively 261.68 and 258.99 W/m2 have the best condition. The economic analysis conducted for turbines shows that for Ardebil, installation of the 3.5 KW and 100 KW turbines will have a payback period of 13 and 5 years, respectively. For Khalkhal, Namin, and Meshkinshahr, the only feasible option is installation of the 100 KW turbine, which would result in a payback period of respectively 10.2, 6.1 and 8.7 years. Then it is investigated how much hydrogen can be gained if these private sectors invest in producing hydrogen using nominated wind turbines.  相似文献   

8.
The paper provides an assessment of the current wind energy potential in Ukraine, and discusses developmental prospects for wind-hydrogen power generation in the country. Hydrogen utilization is a highly promising option for Ukraine's energy system, environment, and business. In Ukraine, an optimal way towards clean zero-carbon energy production is through the development of the wind-hydrogen sector. In order to make it possible, the energy potential of industrial hydrogen production and use has to be studied thoroughly.Ukraine possesses huge resources for wind energy supply. At the beginning of 2020, the total installed capacity of Ukrainian wind farms was 1.17 GW. Wind power generation in Ukraine has significant advantages in comparison to the use of traditional sources such as thermal and nuclear energy.In this work, an assessment of the wind resource potential in Ukraine is made via the geographical approach suggested by the authors, and according to the «Methodical guidelines for the assessment of average annual power generation by a wind turbine based on the long-term wind speed observation data». The paper analyses the long-term dynamics of average annual wind speed at 40 Ukrainian weather stations that provide valid data. The parameter for the vertical wind profile model is calculated based on the data reanalysis for 10 m and 50 m altitudes. The capacity factor (CF) for modern wind turbine generators is determined. The CF spatial distribution for an average 3 MW wind turbine and the power generation potential for the wind power plants across the territory of Ukraine are mapped.Based on the wind energy potential assessment, the equivalent possible production of water electrolysis-derived green hydrogen is estimated. The potential average annual production of green hydrogen across the territory of Ukraine is mapped.It is concluded that Ukraine can potentially establish wind power plants with a total capacity of 688 GW on its territory. The average annual electricity production of this system is supposed to reach up to 2174 bln kWh. Thus, it can provide an average annual production of 483 billion Nm3 (43 million tons) of green hydrogen by electrolysis. The social efficiency of investments in wind-hydrogen electricity is presented.  相似文献   

9.
The aim was to study the Energy Return on Investment (EROI) for the Fljotsdalsstod hydroelectric power plant (690 MW) using real data and a previously proposed standard. Energy return on investment is the ratio between the output and input energy. In this study we calculate the EROI within three defined boundaries, which include different parameters. Results show that over the 100-year lifetime, the plant is expected to deliver an EROI of approximately 110. The largest energy-consuming factor was the own usage, followed by the indirect energy used in the production of the construction materials. Since this study uses a standardised methodology, it can be compared to future studies. To date, this has not been possible since no standard methodology has been used in past studies.  相似文献   

10.
Nova Scotia, Canada's community feed-in tariff (COMFIT) scheme is the world's first feed-in tariff program specifically targeting locally-based renewable energy projects. This study investigated selected turbine capacities to optimize electricity production, based on actual wind profiles for three sites in Nova Scotia, Canada (i.e., Sydney, Caribou Point, and Greenwood). The turbine capacities evaluated are also eligible under the current COMFIT-large scheme in Nova Scotia, including 100 kW, 900 kW and 2.0 MW turbines. A capital budgeting model was developed and then used to evaluate investment decisions on wind power production. Wind duration curves suggest that Caribou Point had the highest average wind speeds but for shorter durations. By comparison, Sydney and Greenwood had lower average wind speeds but with longer durations. Electricity production cost was lowest for the 2.0 MW turbine in Caribou Point ($0.07 per kWh), and highest for the 100 kW turbine located in Greenwood ($0.49 per kWh). The most financially viable wind power project was the 2.0 MW turbine assumed to operate at 80 m hub height in Caribou Point, with NPV=$251,586, and BCR=1.51. Wind power production for the remaining two sites was generally not financially feasible for the turbine capacities considered. The impact of promoting local economic development from wind power projects was higher in a scenario under which wind turbines were clustered at a single site with the highest wind resources than generating a similar level of electricity by distributing the wind turbines across multiple locations.  相似文献   

11.
T. Blackler  M.T. Iqbal   《Renewable Energy》2006,31(4):489-502
The largest commercial thermal generating plant in Newfoundland is in Holyrood, Conception Bay. It has a generating capacity of 500 MW of electricity. During peak generation (winter months), the plant runs at near capacity with generation reaching as high as 500 MW. In addition to thermal generation about 900 MW is supplied to the grid by a number of hydro plants. This paper presents a pre-feasibility study of 25% of thermal power generation using wind turbines in the Holyrood area. Purpose of supplementing power generation from the thermal plant is to reduce emissions and fuel costs. Simulation results indicate that 16 Enercon's E-66, 2 MW wind turbines if installed near the site will provide a 25% renewable fraction. Supplementing 25% of the generation at Holyrood with wind power will reduce the cost of energy by CA$0.013/kWh. It will also reduce carbon emissions by almost 200,000 tons/year. This study indicates that a wind farm project at the Holyrood thermal generation station site is feasible.  相似文献   

12.
This paper explores the global wind power potential of Airborne Wind Energy (AWE), a relatively new branch of renewable energy that utilizes airborne tethered devices to generate electricity from the wind. Unlike wind turbines mounted on towers, AWE systems can be automatically raised and lowered to the height of maximum wind speeds, thereby providing a more temporally consistent power production. Most locations on Earth have significant power production potential above the height of conventional turbines. The ideal candidates for AWE farms, however, are where temporally consistent and high wind speeds are found at the lowest possible altitudes, to minimize the drag induced by the tether. A criterion is introduced to identify and characterize regions with wind speeds in excess of 10 m s−1 occurring at least 15% of the time in each month for heights below 3000 m AGL. These features exhibit a jet-like profile with remarkable temporal constancy in many locations and are termed here “wind speed maxima” to distinguish them from diurnally varying low-level jets. Their properties are investigated using global, 40 km-resolution, hourly reanalyses from the National Center for Atmospheric Research's Climate Four Dimensional Data Assimilation, performed over the 1985–2005 period. These wind speed maxima are more ubiquitous than previously thought and can have extraordinarily high wind power densities (up to 15,000 W m−2). Three notable examples are the U.S. Great Plains, the oceanic regions near the descending branches of the Hadley cells, and the Somali jet offshore of the horn of Africa. If an intermediate number of AWE systems per unit of land area could be deployed at all locations exhibiting wind speed maxima, without accounting for possible climatic feedbacks or landuse conflicts, then several terawatts of electric power (1 TW = 1012 W) could be generated, more than enough to provide electricity to all of humanity.  相似文献   

13.
Using output from a high‐resolution meteorological simulation, we evaluate the sensitivity of southern California wind energy generation to variations in key characteristics of current wind turbines. These characteristics include hub height, rotor diameter and rated power, and depend on turbine make and model. They shape the turbine's power curve and thus have large implications for the energy generation capacity of wind farms. For each characteristic, we find complex and substantial geographical variations in the sensitivity of energy generation. However, the sensitivity associated with each characteristic can be predicted by a single corresponding climate statistic, greatly simplifying understanding of the relationship between climate and turbine optimization for energy production. In the case of the sensitivity to rotor diameter, the change in energy output per unit change in rotor diameter at any location is directly proportional to the weighted average wind speed between the cut‐in speed and the rated speed. The sensitivity to rated power variations is likewise captured by the percent of the wind speed distribution between the turbines rated and cut‐out speeds. Finally, the sensitivity to hub height is proportional to lower atmospheric wind shear. Using a wind turbine component cost model, we also evaluate energy output increase per dollar investment in each turbine characteristic. We find that rotor diameter increases typically provide a much larger wind energy boost per dollar invested, although there are some zones where investment in the other two characteristics is competitive. Our study underscores the need for joint analysis of regional climate, turbine engineering and economic modeling to optimize wind energy production. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents specific life cycle GHG emissions from wind power generation from six different 5 MW offshore wind turbine conceptual designs. In addition, the energy performance, expressed by the energy indicators Energy Payback Ratio (EPR) Energy Payback Time (EPT), is calculated for each of the concepts.There are currently few LCA studies in existence which analyse offshore wind turbines with rated power as great as 5 MW. The results, therefore, give valuable additional environmental information concerning large offshore wind power. The resulting GHG emissions vary between 18 and 31.4 g CO2-equivalents per kWh while the energy performance, assessed as EPR and EPT, varies between 7.5 and 12.9, and 1.6 and 2.7 years, respectively. The relatively large ranges in GHG emissions and energy performance are chiefly the result of the differing steel masses required for the analysed platforms. One major conclusion from this study is that specific platform/foundation steel masses are important for the overall GHG emissions relating to offshore wind power. Other parameters of importance when comparing the environmental performance of offshore wind concepts are the lifetime of the turbines, wind conditions, distance to shore, and installation and decommissioning activities.Even though the GHG emissions from wind power vary to a relatively large degree, wind power can fully compete with other low GHG emission electricity technologies, such as nuclear, photovoltaic and hydro power.  相似文献   

15.
Mario Garcia‐Sanz 《风能》2020,23(2):291-311
This paper introduces a new Metric Space to guide the design of advanced wind energy systems and hydrokinetic energy converters such as tidal, ocean current and riverine turbines. The Metric Space can analyse farms that combine different or identical turbines and stand‐alone turbines. The first metric (M1) of the space considers the efficiency of the turbines in the farm, which is also proportional to the specific power per swept area at a given wind/water velocity (W/m2). The second metric (M2) describes the specific rotor area per unit of mass of the turbines (m2/kg). Both metrics depend on the primary design characteristics of the turbines, such as swept area, system size and mass, materials and efficiency, and are independent at first from external characteristics, such as atmospheric and ocean site conditions, cost of materials and economic factors. Combining both metrics, and for a given set of external characteristics, the resulting Metric Space M2/M1 displays the Levelized Cost of Energy (LCOE) standards as isolines. This graphical representation provides a quick understanding of the cost and state of the technology. It also offers a practical guidance to choose the research tasks and strategy to design advanced wind and hydrokinetic energy systems. The paper applies the new Metric Space to several case studies, including large and small onshore wind turbines, floating and bottom‐fixed offshore wind turbines, downwind rotors, multi‐rotor and hybrid systems, airborne wind energy systems, wind farms and tidal energy converters.  相似文献   

16.
This paper uses the TRNSYS software to investigate the hourly energy generation potential, storage, and consumption via an electrolyzer and a fuel cell in the Canadian city of Saskatoon, which is a region with high solar and wind energy potential. For this purpose, a location with an area of 10,000 m2 was considered, in which the use of solar panels and vertical-axis wind turbines (VAWTs) were simulated. In the simulation, the solar panels were placed at specific distances, and the energy generation capacity, amount of produced hydrogen, and the energy available from the fuel cell were examined hourly and compared to the case with wind turbines placed at standard distances. The results indicated energy generation capacities of 1,966,084 kWh and 75,900 kWh for the solar panels and the wind turbines, respectively, showing the high potential of solar panels compared to wind turbines. Moreover, the fuel cells in the solar and wind systems can produce 733,077 kWh and 22,629 kWh of energy per year, respectively, if they store all of the received energy in the form of hydrogen. Finally, the hourly rates of hydrogen production by the solar and wind systems were reported.  相似文献   

17.
The aim of this study was to predict the wind energy content over the campus area of Izmir Institute of Technology. The wind data were collected at 10 and 30 m mast heights for a period of 16 months. Mean wind speeds were 7.03 and 8.14 m/s at 10 and 30 m mast heights, respectively. The ‘WAsP’ and ‘WindPRO’ softwares were used for the wind statistics and energy calculations. Suitable sites were selected according to the created wind power and energy maps. Wind turbines with nominal powers between 600 and 1500 kW were established for annual energy production calculations and best fitted ones were used for the micrositting.  相似文献   

18.
我国新能源富集的"三北地区"弃风弃光现象严重,同时储能技术发展已逐步接近规模化应用水平。该文在分析影响新能源消纳问题的电网结构特性、储能技术应用发展方向与技术水平的基础上,基于电网可最大释放的新能源发电空间约束建立了以缩减弃风率与弃光率为目标的储能系统功率与容量配置的数学模型,结合储能投资成本与提升新能源消纳收益构成的投资收益比评估约束指标,提出了满足新能源消纳性能/投资成本比较优的储能容量需求计算方法,探索了储能提升新能源消纳能力的技术与经济可行性分析思路。以消纳风电和光伏为主的两省级电网为例,讨论了储能在送端电网中促进风电和光伏消纳应用中的作用及经济适用性,验证了该新能源消纳方案的可行性。  相似文献   

19.
In this study, two wind-solar-based polygeneration systems namely CES-1 and CES-2 are developed, modeled, and analyzed thermodynamically. CES-1 hybridizes a heliostat based CSP system with wind turbines while CES-2 integrates heliostat-based CPVT with wind turbines. This study aims to compare the production and thermodynamics performance of two heliostat based concentrated solar power technologies when hybridized with wind turbines. The systems have been modeled to produce, freshwater, hot water, electricity, hydrogen, and cooling with different cycles/subsystems. While the overall objective of the study is to model two polygeneration systems with improved energy and exergy performances, the performances of two solar technologies are compared. The wind turbine system integrated with the comprehensive energy systems will produce 1.14 MW of electricity and it has 72.2% energy and exergy efficiency. Also, based on the same solar energy input, the performance of the heliostat integrated CPVT system (CES-2) is found to be better than that of the CSP based system (CES-1). The polygeneration thermal and exergy efficiencies for the two systems respectively are 48.08% and 31.67% for CES-1; 59.7% and 43.91% for CES-2. Also, the electric power produced by CES-2 is 280 kW higher in comparison to CES-1.  相似文献   

20.
Nowadays, wind energy plays a key role as a sustainable source of energy and wind turbines are a relevant source of power for many countries world-wide. In such a context, this paper investigates the technical and economic feasibility of small wind turbines for five of the main European Union countries (France, Germany, Italy, Spain and The Netherlands). Ten commercial turbines with rated power from 2.5 kW to 200 kW are evaluated considering their installation and operative conditions. Several parameters most affecting wind turbine performances are evaluated and the estimation of the annual cash flows during the expected plant life-time are determined as a function of both the installation location (wind speed probability distribution, national incentive scheme and tax level) and the wind turbine characteristics (rated power curve, maintenance, installation and shipping costs). The obtained data are presented and discussed through a parametric analysis based on the Net Present Value capital budget approach, showing the conditions making these systems profitable or non-profitable and explaining the relative motivations. Moreover, the analysis outcomes are further investigated highlighting the dependence of the turbine profitability from the considered parameters, including a comparative analysis among the five analyzed European countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号