首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase structure and hydrogen storage properties of LaMg3.70Ni1.18 alloy were investigated. The LaMg3.70Ni1.18 alloy consists of main LaMg2Ni phase, minor La2Mg17 and LaMg3 phases. The alloy can be activated in the first hydriding/dehydriding process, and initial LaMg2Ni, La2Mg17, and LaMg3 phases transfer to LaH2.34, Mg, and Mg2Ni phases after activation. The reversible hydrogen storage capacity of the LaMg3.70Ni1.18 alloy is 2.47 wt.% at 558 K, which is higher than that of the LaMg2Ni alloy. The pressure-composition-temperature (PCT) curves display two hydriding plateaus, corresponding to the formation of MgH2 and Mg2NiH4. However, only one dehydriding plateau is observed, owing to the synergetic effect of hydrogen desorption between MgH2 and Mg2NiH4. The uptake time for hydrogen content to reach 99% of saturated state is less than 250 s, and 90% hydrogen can be released in 1200 s in the experimental conditions, showing fast kinetics in hydriding and dehydriding. The activation energies of the LaMg3.70Ni1.18 alloy are −51.5 ± 1.1 kJ/mol and −57.0 ± 0.6 kJ/mol for hydriding and dehydriding, respectively. The hydriding/dehydriding kinetics of the LaMg3.70Ni1.18 alloy is better than that of the Mg2Ni alloy, owing to the lower activation energy values.  相似文献   

2.
Core–shell nanostructured magnetic Fe3O4@SiO2 with particle size ranging from 3 nm to 40 nm has been synthesized via a facile precipitation method. Tetraethyl orthosilicate was employed as surfactant to prepare core–shell structures from Fe3O4 nanoparticles synthesized from pomegranate peel extract using a green method. X-ray diffraction analysis, Fourier-transform infrared and ultraviolet–visible (UV–Vis) spectroscopies, transmission electron microscopy, and scanning electron microscopy with energy-dispersive spectroscopy were employed to characterize the samples. The prepared Fe3O4 nanoparticles were approximately 12 nm in size, and the thickness of the SiO2 shell was?~?4 nm. Evaluation of the magnetic properties indicated lower saturation magnetization for Fe3O4@SiO2 powder (~?11.26 emu/g) compared with Fe3O4 powder (~?13.30 emu/g), supporting successful wrapping of the Fe3O4 nanoparticles by SiO2. As-prepared powders were deposited on carbon fibers (CFs) using electrophoretic deposition and their electrochemical behavior investigated. The rectangular-shaped cyclic voltagrams of Fe3O4@CF and Fe3O4@C@CF samples indicated electrochemical double-layer capacitor (EDLC) behavior. The higher specific capacitance of 477 F/g for Fe3O4@C@CF (at scan rate of 0.05 V/s in the potential range of ??1.13 to 0.45 V) compared with 205 F/g for Fe3O4@CF (at the same scan rate in the potential range of?~???1.04 to 0.24 V) makes the former a superior candidate for use in energy storage applications.  相似文献   

3.
采用高能球磨制备Ni?25%X(X=Fe,Co,Cu,摩尔分数)固溶体,然后将其掺杂于MgH2体系中.与球磨纯MgH2相比,MgH2/Ni?25%X复合体系初始放氢温度降低近90℃,其中,Ni?25%Co固溶体呈最佳催化效果.球磨MgH2/Ni?25%Co复合体系在300℃、10 min内可释放5.19%(质量分数)氢...  相似文献   

4.
Triangulation of the Ag-Hg-Se-I system in the vicinity of quaternary phase Ag4HgSe2I2 was performed by differential thermal analysis, X-ray diffraction and electromotive force (EMF) methods. The spatial position of the phase region Ag4HgSe2I2-Se-HgI2 regarding the figurative point of silver was used to write the chemical reaction of formation of Ag4HgSe2I2. The EMF measurements were carried out by applying an electrochemical cell: (–) C|Ag|Ag2GeS3 glass|Ag4HgSe2I2, HgI2, Se|C (+), where C is graphite and Ag2GeS3 glass is the fast purely Ag+ ions conducting electrolyte. The linear dependence of the EMF of the electrochemical cell on temperature was used to determine the standard thermodynamic values of Ag4HgSe2I2 for the first time.  相似文献   

5.
Low-Co La1.8Ti0.2MgNi8.9Co0.1 alloys were prepared by magnetic levitation melting followed by annealing treatment. The effect of annealing on the hydrogen storage properties of the alloys was investigated systematically by X-ray diffraction (XRD), pressure-composition isotherm (PCI), and electrochemical measurements. The results show that all samples contain LaNi5 and LaMg2Ni9 phases. LaCo5 phase appears at 1,000 °C. The enthalpy change of all hydrides is close to ?30.6 kJ·mol?1 H2 of LaNi5 compound. Annealing not only increases hydrogen capacity and improves cycling stability but also decreases plateau pressure at 800 and 900 °C. After annealing, the contraction of cell volume and the increase of hydride stability cause the high rate dischargeability to reduce slightly. The optimum alloy is found to be one annealed at 900 °C, with its hydrogen capacity reaching up to 1.53 wt%, and discharge capacity remaining 225.1 mAh·g?1 after 140 charge–discharge cycles.  相似文献   

6.
Eighteen as-cast binary Mg–Ni, Mg–Mm and ternary Mg–Ni–Mm and Mg–Ni–TM (TM=transition metals (Cu, Zn, Mn and Co); Mm = mischmetal containing Ce, La, Nd and Pr) alloys were hydrided by an electrochemical process to determine the alloys with the most potential for electrochemical hydrogen storage. The alloys were hydrided in a 6 mol/L KOH solution at 80 °C for 480 min and at 100 A/m2. To assess the electrochemical hydriding performance of alloys, maximum hydrogen concentrations, hydrogen penetration depths and total mass of absorbed hydrogen in the alloys were measured by glow discharge spectrometry. In addition, the structures and phase compositions of the alloys both before and after hydriding were studied by optical and scanning electron microscopy, energy dispersive spectrometry and X-ray diffraction. It was determined that the highest total amount of hydrogen was absorbed by the Mg–25Ni–12Mm and Mg–26Ni (mass fraction, %) alloys. The maximum hydrogen concentrations in the Mg–25Ni–12Mm and Mg–26Ni alloys were 1.0% and 1.6%, respectively. The main hydriding product was the binary MgH2 hydride, and the ternary Mg2NiH4 hydride was also detected in the Mg–25Ni–12Mm alloy. The electrochemical hydriding parameters achieved are discussed in relation to the structures of alloys, alloying elements and hydriding mechanisms.  相似文献   

7.
Low-temperature hot corrosion tests were performed on bulk Cr2AlC MAX phase compounds for the first time. This material is a known alumina-former with good oxidation and Type I high-temperature hot corrosion resistance. Unlike traditional (Ni,Co)CrAl alumina formers, it contains no Ni or Co that may react with Na2SO4 salt deposits needed to form corrosive mixed (Ni,Co)SO4–Na2SO4 eutectic salts active in Type II hot corrosion. Cr2AlC samples coated with 20K2SO4–80Na2SO4 salt were exposed to 300 ppm SO2 at 700 °C for times up to 500 h. Weight change, recession, and cross-sectional microstructures identified some reactivity, but much reduced (<?1/10) compared to a Ni(Co) superalloy baseline material. Layered Al2O3/Cr2O3 scales were indicated, either separated by or intermixed with some retained salt. However, there was no conclusive indication of salt melting. Accelerated oxidation was proposed to explain the results, and coarse Cr7C3 impurities appeared to play a negative role. In contrast, the superalloy exhibited outer Ni(Co) oxide and inner Cr2O3 scales, with Cr–S layers at the interfaces. Massive spallation of the corrosion layers occurred repeatedly for the superalloy, but not at all for Cr2AlC. This indicates some potential for Cr2AlC as LTHC-resistant coatings for superalloys.  相似文献   

8.
The present study investigates the early stages in the oxidation process of Sanicro 28 (Fe31Cr27Ni) stainless steel when exposed to an alkali salt (KCl, NaCl or K2CO3) for 2 h at 450 and 535 °C. After the exposure, the oxidized samples were analyzed with a combinatory method (CA, XPS and SEM–EDX). It was found that all three salts were corrosive, and the overall oxidation reaction rate was much higher at 535 °C than at 450 °C. There were clear differences in terms of the impact of cations (Na+, K+) and anions (Cl?, CO3 2?) on the initial corrosion process at both temperatures. When focusing on the cations, the presence of potassium ions resulted in a higher rate of chromate formation than in the presence of sodium ions. When studying the effect of anions, the oxidation of iron and chromium occurred at higher rates in the presence of both chloride salts than in the presence of the carbonate salt, and chloride salts seemed to possess higher diffusion rate in the gas phase and along the surface than carbonate salts. Moreover, at the higher temperature of 535 °C, the formed chromate reacted further to chromium oxide, and an ongoing oxidation process of iron and chromium was identified with a significantly higher reaction rate than at 450 °C.  相似文献   

9.
A rotary viscosimeter and Raman spectrum were employed to measure the viscosity and structural information of the CaO-SiO2-P2O5-FetO system at 1673 K. The experimental data have been compared with the calculated results using different viscosity models. It shows that the National Physical Laboratory (NPL) and Pal models fit the CaO-SiO2-P2O5-FeOt system better. With the P2O5 content increasing from 5% to 14%, the viscosity increases from 0.12 Pa s to 0.27 Pa s. With the FeO content increasing from 30% to 40%, the viscosity decreases from 0.21 Pa s to 0.12 Pa s. Increasing FeO content makes the complicated molten melts become simple, and increasing P2O5 content will complicate the molten melts. The linear relation between viscosity and structure parameter Q(Si + P) was obtained by regression analysis. The calculated viscosity by using the optimized NPL and Pal model are almost identical with the fitted values.  相似文献   

10.
The growth kinetics and silicon diffusion coefficients of intermediate silicide phases in MoSi2-3.5 vol.% Si3N4-5.0 vol.% WSi2/Mo diffusion couple prepared by spark plasma sintering were investigated in temperatures ranging from 1200 to 1500 °C. The intermediate silicide phases were characterized by x-ray diffraction. The microstructures and components of the MoSi2-Si3N4-WSi2/Mo composites were investigated using scanning electron microscope with energy-dispersive spectroscopy. A special microstructure with MoSi2 core surrounded by a thin layer of (Mo,W)Si2 ring was found in the MoSi2-Si3N4-WSi2 composites. The intermediate layers of Mo5Si3 and (Mo,W)5Si3 in the MoSi2-Si3N4-WSi2/Mo diffusion couples were formed at different diffusion stages, which grew parabolically. Activation energy of the growth of intermediate layers in MoSi2-3.5 vol.% Si3N4-5.0 vol.% WSi2/Mo diffusion couple was calculated to be 316 ± 23 kJ/mol. Besides, the hindering effect of WSi2 addition on the growth of intermediate layers was illustrated by comparing the silicon diffusion coefficients in MoSi2-3.5 vol.% Si3N4-5.0 vol.% WSi2/Mo and MoSi2-3.5 vol.% Si3N4/Mo diffusion couples. MoSi2-3.5 vol.% Si3N4-5.0 vol.% WSi2 coating on Mo substrate exhibited a better high-temperature oxidation resistance in air than that of MoSi2-3.5 vol.% Si3N4 coating.  相似文献   

11.
In this research, development of Cr3C2-25(NiCr) + 25%(WC-Co) composite coating was done and investigated. Cr3C2-25(NiCr) + 25%(WC-Co) composite powder [designated as HP2 powder] was prepared by mechanical mixing of [75Cr3C2-25(NiCr)] and [88WC-12Co] powders in the ratio of 75:25 by weight. The blended powders were used as feedstock to deposit composite coating on ASTM SA213-T22 substrate using High Velocity Oxy-Fuel (HVOF) spray process. High-temperature oxidation/corrosion behavior of the bare and coated boiler steels was investigated at 700 °C for 50 cycles in air, as well as, in Na2SO4-82%Fe2(SO4)3 molten salt environment in the laboratory. Erosion-corrosion behavior was investigated in the actual boiler environment at 700 ± 10 °C under cyclic conditions for 1500 h. The weight-change technique was used to establish the kinetics of oxidation/corrosion/erosion-corrosion. X-ray diffraction, field emission-scanning electron microscopy/energy-dispersive spectroscopy (FE-SEM/EDS), and EDS elemental mapping techniques were used to analyze the exposed samples. The uncoated boiler steel suffered from a catastrophic degradation in the form of intense spalling of the scale in all the environments. The oxidation/corrosion/erosion-corrosion resistance of the HVOF-sprayed HP2 coating was found to be better in comparison with standalone Cr3C2-25(NiCr) coating. A simultaneous formation of protective phases might have contributed the best properties to the coating.  相似文献   

12.
At T6 state, Al–Zn–Mg–Cu aluminum matrix composites reinforced with Al2O3 particles generated in situ were subjected to high pulsed magnetic fields at different magnetic induction intensities (B = 2, 3 and 4 T). The results show that the dislocation densities in the treated samples increased with increasing B, and the magnetoplastic effect was determined to be the primary cause. The effect of the magnetic field is believed to alter the spin state of free electrons between dislocations and obstacles from the singlet state (associated with high bonding energy) to the triplet state (low bonding energy). The maximum ultimate tensile strength of 532 MPa was obtained at B = 4 T with 30 pulses, which was 20.7% higher than that of the initial sample, primarily because of dislocation strengthening. At B = 2 T, the elongation was at its maximum of 9.3%, representing an increase of 12% compared with the initial sample, while the associated ultimate tensile strength (447 MPa) was still higher than that of the untreated sample (440 MPa). The relationship between mechanical properties and microstructure was analyzed, and the improved properties observed in this work are explained by the transition of the electron spin state and the piling up of dislocations.  相似文献   

13.
Lanthanum zirconate (La2Zr2O7) has been proposed as a promising thermal barrier coating (TBC) material due to its low thermal conductivity and high stability at high temperatures. In this work, both single and double-ceramic-layer (DCL) TBC systems of La2Zr2O7 and 8 wt.% yttria-stabilized zirconia (8YSZ) were prepared using air plasma spray (APS) technique. The thermomechanical properties and microstructure were investigated. Thermal gradient mechanical fatigue (TGMF) tests were applied to investigate the thermal cycling performance. The results showed that DCL La2Zr2O7 + 8YSZ TBC samples lasted fewer cycles compared with single-layered 8YSZ TBC samples in TGMF tests. This is because DCL La2Zr2O7 TBC samples had higher residual stress during the thermal cycling process, and their fracture toughness was lower than that of 8YSZ. Bond strength test results showed that 8YSZ TBC samples had higher bond strength compared with La2Zr2O7. The erosion rate of La2Zr2O7 TBC samples was higher than that of 8YSZ samples, due to the lower critical erodent velocity and fracture toughness of La2Zr2O7. DCL porous 8YSZ + La2Zr2O7 had a lower erosion rate than other SCL and DCL La2Zr2O7 coatings, suggesting that porous 8YSZ serves as a stress-relief buffer layer.  相似文献   

14.
Hydrogen storage properties of 2LiNH2 – MgH2 –xNbH(x = 0 and 0.05) composites and the catalysis of NbH on hydrogen sorption reaction of the Li–Mg– N–H system were investigated. Hydrogen sorption properties of 2LiNH2 –MgH2 system are effectively improved by adding NbH. Temperature programmed desorption results show the addition of NbH reduces the dehydriding onset temperature of 2LiNH2 –MgH2 system by 21 K. Approximate 3.62 wt% hydrogen in 2LiNH2 –MgH2 – 0.05NbH composite is released following a 500 min at 433 K, whereas the amount of hydrogen desorption is only *3.16 wt% for the pristine system under the same condition. The sample with NbH exhibits higher dehydriding rate compared with the pristine one. Moreover, hydrogen absorption rate increases by adding NbH into the 2LiNH2 – MgH2 system. Hydrogen absorption capacity of the samples with NbH is 3.23 wt% within 400 min, which is higher than that of pristine sample. Fine NbH particles homogeneously distribute in the 2LiNH2 –MgH2 –0.05NbH composite, and catalyze the hydrogen sorption reaction rather than reacts as a reactant into new compound.  相似文献   

15.
Corrosion of boilers and heat exchangers is accelerated in the presence of vanadium, sodium, and sulfur from low-grade fuels. Several iron- and nickel-based alloys were immersed in 60 mol% V2O5–40Na2SO4 salt for 1000 h in order to investigate their degradation behavior at 600 °C in air. Materials performance was analyzed by means of substrate recession rate and metallographic characterization. Their corrosion mechanism is characterized by the formation of a sulfide/oxide layer adjacent to the metal, the dissolution of scale oxides in the molten deposit, and their precipitation near the outer surface of the deposit. High Ni- and Cr-containing alloys show the lowest metal loss rates. Al addition was detrimental due to low-melting eutectic AlVO4–V2O5 formation. Fe–Cr-based alloys showed the highest metal loss rates. In such alloys, high Cr additions (above 20%) did not improve the performance due to the negative synergetic effect by simultaneous dissolution of Fe2O3 and Cr2O3. The predominant salt composition at the corrosion front varied from vanadate rich to sulfate rich during the exposure. This change in the attacking salt makes it difficult to find a protective material for mixed sulfate–vanadate-induced corrosion.  相似文献   

16.
A novel approach to prepare a coating system containing an in situ grown Cr2O3 diffusion barrier between a nickel top layer and 310SS was reported. Cold spraying was employed to deposit Ni(O) interlayer and top nickel coating on the Cr-contained stainless steel substrate. Ni(O) feedstock was prepared by mechanical alloying of pure nickel powders in ambient atmosphere, acting as an oxygen provider. The post-spray annealing was adopted to grow in situ Cr2O3 layer between the substrate and nickel coating. The results revealed that the diffusible oxygen can be introduced into nickel powders by mechanical alloying. The oxygen content increases to 3.25 wt.% with the increase of the ball milling duration to 8 h, while Ni(O) powders maintain a single phase of Ni. By annealing the sample in Ar atmosphere at 900 °C, a continuous Cr2O3 layer of 1-2 μm thick at the interface between 310SS and cold-sprayed Ni coating is formed. The diffusion barrier effect evaluation by thermal exposure at 750 °C shows that the Cr2O3 oxide layer effectively suppresses the outward diffusion of Fe and Cr in the substrate effectively.  相似文献   

17.
A series of novel AgCl/Ag2CO3 heterostructured photocatalysts with different AgCl contents (5 wt%, 10 wt%, 20 wt%, and 30 wt%) were prepared by facile coprecipitation method at room temperature. The resulting products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis DRS), respectively. The photocatalytic activity of the samples was evaluated by photocatalytic degradation of methyl orange (MO) under UV light irradiation. With the optimal AgCl content of 20 wt%, the AgCl/Ag2CO3 composite exhibits the greatest enhancement in photocatalytic degradation efficiency. Its first-order reaction rate constant (0.67 h?1) is 5.2 times faster than that of Ag2CO3 (0.13 h?1), and 16.8 times faster than that of AgCl (0.04 h?1). The formation of AgCl/Ag2CO3 heterostructure could effectively suppress the recombination of the photo-generated electron and hole, resulting in an increase in photocatalytic activity.  相似文献   

18.
Mn nanoparticles (nano-Mn) were successfully synthesized and doped into MgH2 to improve its de/hydrogenation properties. Compared with MgH2, the onset desorption temperature of 10 wt.% nano-Mn modified MgH2 was decreased to 175 °C and 6.7, 6.5 and 6.1 wt.% hydrogen could be released within 5, 10 and 25 min at 300, 275 and 250 °C, respectively. Besides, the composite started to take up hydrogen at room temperature and absorbed 2.0 wt.% hydrogen within 30 min at low temperature of 50 °C. The hydrogenation activation energy of MgH2 was reduced from (72.5±2.7) to (18.8±0.2) kJ/mol after doping with 10 wt.% nano-Mn. In addition, the MgH2 + 10 wt.% nano-Mn composite exhibited superior cyclic property, maintaining 92% initial capacity after 20 cycles.  相似文献   

19.
Magnetization curves of single crystals of Nd2Fe14B and its hydride Nd2Fe14BH4 have been measured along their principal crystallographic directions in a temperature range of 4.2–280 K. The magnetic anisotropy constants, which allow one to describe experimental magnetization curves as well as the low-temperature “easy-cone”-type magnetic structure and field-induced first-order magnetic phase transitions, have been determined in terms of a collinear-ferrimagnetic-ordering model. The anisotropy constants were shown to decrease in magnitude upon hydrogenation. In this case, the ratios of the effective fourth-and sixth-order constants to the second-order constant increase, whereas the constants responsible for the basal-plane anisotropy exhibit a more than threefold decrease. At the same time, the spin-reorientation temperature and opening of the magnetization cone at 4.2 K remain virtually unchanged. The results obtained are discussed in terms of the single-ion-anisotropy theory.  相似文献   

20.
In the present work, nano-composites of Ni-P-SiO2-Al2O3 were coated on AZ91HP magnesium alloy. The surface morphology of the nano-composite coating was studied by field emission scanning electron microscopy (FESEM). The amount of SiO2 in the coating was determined by energy-dispersive analysis of x-ray (EDX), and the crystalline structure of the coating was examined by x-ray diffractometer (XRD). All the experiments concerning the corrosion behavior of the coating carried out in 3.5 wt.% NaCl solution and evaluated by electrochemical impedance spectroscopy (EIS) and polarization technique. The results showed that an incorporation of SiO2 and Al2O3 in Ni-P coating at the SiO2 concentration of 10 g/Land 14 g/LAl2O3 led to the lowest corrosion rate (i corr = 1.3 µA/cm2), the most positive E corr and maximum microhardness (496 VH). Furthermore, Ni-P-SiO2-Al2O3 nano-composite coating possesses less porosity than that in Ni-P coating, resulting in improving corrosion resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号