首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
霍庆城  黄仁亮  齐崴  苏荣欣  何志敏 《化工学报》2016,67(10):4406-4412
微生物燃料电池(MFC)是一种利用微生物将有机物中的化学能直接转化成电能的装置,通过改善阳极特性可以有效提高微生物燃料电池的产电性能。通过恒电流法电沉积制备了氧化石墨烯/聚3,4-乙烯二氧噻吩(GO/PEDOT)复合材料修饰碳毡(CF)阳极。通过循环伏安法和交流阻抗法考察了电极特性。将其应用到微生物燃料电池中,对其产电性能进行评价。结果表明,GO/PEDOT-CF电极具有较大的比表面积和优良的电化学性能;以GO/PEDOT-CF为阳极的微生物燃料电池,产电性能良好,其最大功率密度和最大电流密度达到1.138 W·m-2和4.714 A·m-2,分别是未修饰阳极的4.80倍和5.51倍。因此,GO/PEDOT复合材料是一种优良的阳极修饰材料,可有效提高MFC的产电性能。  相似文献   

2.
产电微生物与电池阳极之间的电子传递效率是影响微生物燃料电池(MFC)产电性能的重要因素之一.通过对阳极材料的改进和修饰可以有效地降低阳极反应的活化能垒,提高电子传递效率,进而提高MFC产电性能.详细介绍了近年来MFC阳极材料的国内外研究进展,并针对当前研究所面临的问题,提出了今后MFC阳极的发展方向.  相似文献   

3.
石墨烯/聚苯胺复合阳极的制备及在MFC中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
采用化学氧化还原法制备高纯度石墨烯(GR),利用电化学修饰法得到石墨烯/聚苯胺(GR/PANI)膜阳极,采用红外光谱(FI-IR)、X射线衍射(XRD)、场发射扫描电镜(FESEM)对所制备复合电极进行了表征,采用循环伏安法(CV)、交流阻抗法(EIS)考察了复合电极的电化学性能。将GR/PANI膜阳极应用于固定床微生物燃料电池(MFC),考察了电池的产电性能。均匀地附着在石墨烯表面,GR/PANI膜电极具有良好可逆性,其电阻小、导电性良好。GR/PANI膜阳极应用于MFC,最大功率密度和开路电压分别为230.2 mW·m-2和834.6 mV,比未修饰阳极的最大功率密度和开路电压分别提高了110.6%和34.8%,GR/PANI膜阳极的表观内阻也由未修饰阳极的843.2Ω降低为469.4 Ω,且电池启动时间大大缩短,产电稳定性增强。结果表明,GR/PANI复合物是一种优良的电极材料,GR/PANI膜阳极MFC具有良好的产电性能。  相似文献   

4.
微生物燃料电池阳极修饰的研究进展   总被引:2,自引:0,他引:2  
微生物细胞与电池阳极之间的电子转移速率是影响微生物燃料电池(MFC)产电性能的重要因素之一.通过阳极修饰可以促进电子转移速率,进而提高MFC产电性能.综述了MFC阳极修饰的研究进展.  相似文献   

5.
微生物燃料电池(MFC)是一种利用微生物将有机物中的化学能直接转化成电能的装置,通过改善阳极特性可以有效提高微生物燃料电池的产电性能。通过恒电流法电沉积制备了氧化石墨烯/聚3,4-乙烯二氧噻吩(GO/PEDOT)复合材料修饰碳毡(CF)阳极。通过循环伏安法和交流阻抗法考察了电极特性。将其应用到微生物燃料电池中,对其产电性能进行评价。结果表明,GO/PEDOT-CF电极具有较大的比表面积和优良的电化学性能;以GO/PEDOT-CF为阳极的微生物燃料电池,产电性能良好,其最大功率密度和最大电流密度达到1.138W·m?2和4.714 A·m?2,分别是未修饰阳极的4.80倍和5.51倍。因此,GO/PEDOT复合材料是一种优良的阳极修饰材料,可有效提高MFC的产电性能。  相似文献   

6.
纳米材料修饰阳极可显著提高微生物燃料电池(MFC)性能,本研究主要探索了石墨烯、聚苯胺和石墨烯/聚苯胺复合修饰电极对MFC产电性能的影响。使用电化学方法电镀石墨烯于碳布表面,进一步通过原位聚合法制备聚苯胺来修饰碳布电极。将修饰电极装载入双室型MFC中,测量其产电性能,并对电极进行表征,测量电化学性能。通过扫描电镜观察到, 碳布能够被修饰上石墨烯和聚苯胺,并且聚苯胺附着于碳纤维或石墨烯薄层表面,形成棒状的纳米结构。产电性能方面,装载石墨烯/聚苯胺修饰电极的MFC最大输出电压最高,达到了(291±22)mV,比装载空白碳布电极的对照组MFC提高了175%以上。石墨烯/聚苯胺电极组MFC的最大输出功率密度同样最高,达到了(653 ± 25)mW·m-2,为空白碳布对照组的10.5倍。实验结果表明:石墨烯/聚苯胺复合修饰电极可有效利用石墨烯导电性好和聚苯胺生物相容性高的优点,显著提高MFC的产电性能。  相似文献   

7.
微生物燃料电池(MFC)能在降解废水中有机污染物的同时产生电能,是当前环保与能源工程交叉领域的研究热点。以无介体MFC为研究对象,构建了用污水混合菌接种的双室无介体MFC,以提高MFC系统的产电性能为目标,利用自行制备的钕铁硼磁性粉末材料对阳极进行修饰。通过电池电压、极化曲线、功率密度曲线的测定,研究改性阳极和未改性阳极MFC的产电性能,结果表明,MFC阳极在经0.5 mg/cm2钕铁硼磁化改性后,电池的产电性能得到提升,其最大功率密度为12.05 m W/cm2。  相似文献   

8.
为了提高微生物燃料电池(MFC)对沼液中有机质的降解和产电效率,将纳米Fe3O4与MFC结合,对比研究了纳米Fe3O4以Fe3O4@生物炭和Fe3O4@碳毡两种不同介入方式对MFC性能的影响。结果表明,两种方式均可成功启动MFC,且产电效率远高于无纳米Fe3O4介入的空白实验,最高电压分别为699和707 mV,最高电压均持续时间长达10 d。Fe3O4@碳毡与Fe3O4@生物炭介入下MFC最大功率密度分别为700和578 mW/m2,相较于未使用纳米Fe3O4的MFC提高了43%和31%。将Fe3O4@碳毡作为阳极电极得到的化学需氧量(COD)降解率最高,为51.76%;直接投加Fe3O4@生物炭对NH4+-N的降解影响最大,投加Fe3O4@生物炭后NH4+-N含量由(6800.14±57.86) mg/L降至(689.14±37.29) mg/L,NH4+-N降解率达到89.87%。纳米Fe3O4参与的MFC微生物群落结构合理,两种介入方式均刺激了主要水解细菌梭菌纲(Clostridia)的生长富集。随着纳米Fe3O4的位置变化,Clostridia的相对丰度在以Fe3O4@生物炭和Fe3O4@碳毡介入的MFC中分别达到61.11%、50.98%。二者的电活化细菌中β-变形菌纲(Betaproteobacteria)含量最高,并且在反应后碳毡上发现了反硝化细菌芽孢八叠球菌属(Sporosarcina)。  相似文献   

9.
偶氮含盐废水生化处理流程复杂、电耗高,且降解机理尚不明确。本研究基于酸性重铬酸钾法水热处理获取改性阳极,进而构建微生物燃料电池(microbial fuel cell,MFC)对偶氮含盐废水进行处理。考察了不同二价阴离子对MFC产电性能和降解有机物效果的影响,并探究了MFC对直接红13的降解机理。结果表明,偶氮含盐废水中含有硫酸钠时的产电性能高于含有碳酸钠的情况,MFC最大功率密度为265.38mW/m2、最大电流密度为1.10A/m2;MFC处理偶氮含盐废水时,对直接红13的去除率低于无额外添加盐时的效果(71.13%),对葡萄糖共基质的降解影响程度为:添加硫酸钠>添加碳酸钠>无额外添加盐。微生物群落和降解产物分析表明,MFC阳极生物膜通过变形菌门、拟杆菌门等微生物的协同作用实现了对直接红13的生物电化学降解,产电下降解产物以还原产物芳香胺为主。  相似文献   

10.
张元浩  高常飞  刘珂萌  王红波 《广东化工》2022,(20):118-120+132
本研究在污泥生物炭中掺杂氮,经高温灼烧后利用PVDF附着在粗糙多孔的火山岩表面,实现对微生物燃料电池(MFC)中阳极材料的改性,并使用普通未有氮掺杂的活性炭作为对照组的阳极材料。制备的氮掺杂的阳极材料具有良好的生物附着性、较大的电化学反应活性面积。改性后的MFC在稳定运行一段时间后,其周期内最高输出电压达到0.666 V,最大输出功率密度达到0.13 W/m2。氮掺杂污泥生物炭改性后的阳极材料辅助MFC开展模拟有机废水的处理,化学需氧量(COD)、氨氮(NH4+-N)、总磷(TP)的去除效率分别为87.1%、77.7%和93.5%。研究结果表明采用氮掺杂污泥生物炭的火山岩辅助MFC,不仅具有良好的产电性能,对有机废水中处理中也表现出优异的处理效果,该研究利用污泥和火山岩大大降低了阳极材料的制备成本,增加了微生物的附着面积,提高了MFC的产电性能,应用前景广阔。  相似文献   

11.
印霞棐  刘维平 《化工进展》2015,34(4):1152-1158,1170
实验以有机废水为阳极底物,以活性污泥中的混合菌为阳极接种微生物,以含铜废水为阴极液,构建双室MFC,探讨电极对MFC同时处理有机废水和含铜重金属废水产电性能的影响.结果表明:MFC对阳极有机废水COD的去除率最高为79.1%,对阴极液中Cu2+的去除率最高为95.6%.活性炭/石墨棒电极MFC产电性能最优,开路电压最高为800mV,是石墨棒电极MFC的1.25倍,是活性炭/碳纸电极MFC的1.3倍,是碳纸电极MFC的1.5倍.当电极距离为2cm时,MFC开路电压580mV,内阻为181Ω,产电性能最优.电极表面积为75cm2时,MFC的开路电压470mV,是电极表面积为50cm2的MFC的1.1倍,是电极表面积为30cm2的MFC的2.1倍.当AAn/Acat=0.4时MFC产能最佳,MFC的开路电压最高为600mV,最大功率密度48.2mW/m2.  相似文献   

12.
Microbial fuel cells(MFCs)rely on microbial conversion of organic substrates to electricity.The optimal performance depends on the establishment of a microbial community rich in electrogenic bacteria.Usually this microbial community is established from inoculation of the MFC anode chamber with naturally occurring mixed inocula.In this study,the electrochemical performance of MFCs and microbial community evolution were evaluated for three inocula including domestic wastewater(DW),lake sediment(LS)and biogas sludge(BS)with varying substrate loading(L_(sub))and external resistance(R_(ext))on the MFC.The electrogenic bacterium Geobacter sulfurreducens was identified in all inocula and its abundance during MFC operation was positively linked to the MFC performance.The LS inoculated MFCs showed highest abundance(18% ± 1%)of G.sulfurreducens,maximum current density [I_(max)=(690 ± 30)m A·m~(-2)] and coulombic efficiency(CE = 29% ± 1%)with acetate as the substrate.Imaxand CE increased to(1780 ± 30)m A·m~(-2)and 58% ± 1%,respectively,after decreasing the R_(ext) from 1000 Ω to 200 Ω,which also correlated to a higher abundance of G.sulfurreducens(21% ± 0.7%)on the MFC anodic biofilm.The data obtained contribute to understanding the microbial community response to Lsub and R_(ext)for optimizing electricity generation in MFCs.  相似文献   

13.
BACKGROUND: Nitrogen removal using microbial fuel cells (MFCs) is of great interest owing to the potential benefits of bioenergy production. In this study, simultaneous nitrification and denitrification in dual‐cathode MFCs was investigated. RESULTS: The dual‐cathode MFCs investigated were capable of generating electricity and removing nitrogen, influenced by operating methods, nitrogen loading rates and external resistance. Depending on the ammonium concentration in the anode chamber, 84–97% of the ammonium nitrogen was removed via nitrification in the aerobic cathode. The removals of nitrate and total nitrogen were relatively low (~50%) at the influent ammonium concentration of 80 mg NH4+‐N L?1, but were significantly improved to more than 90% at a lower ammonium input (40 and 20 mg NH4+‐N L?1). When the electrode couples were electrically connected for different purposes, with high power output from the anode/aerobic cathode and high current generation from the anode/anoxic cathode, nitrogen removal was also improved. An investigation of aeration suggested that factors other than carbon supply, possibly inefficient reactor configuration, also limited the performance of the developed MFC. CONCLUSION: The experimental results demonstrated that the proposed pathway was feasible with effective nitrogen and organic removal. This study provided valuable information for the further development of a continuously operated dual‐cathode MFC system. Copyright © 2011 Society of Chemical Industry  相似文献   

14.
Microbial fuel cells (MFCs) are bioelectronics devices that can directly convert the chemical energy from organic matter to electricity from the catalytic activity of living microorganisms. A number of factors influence the performance of MFCs, such as anode materials and surface structure. In this paper, α-Fe2O3 nanorods were used as shell material to fabricate multilayered hollow polyelectrolyte capsules based on a layer-by-layer (LBL) self-assembly technique. The capsules were used as anode materials in MFCs, which can enlarge the contacting area between the bacteria and the anode. According to the results, this modification strategy produced a higher level of electricity output compared with the bare anode method, and the MFC with the two-bilayer film anode produced a much higher current level, which is consistent with our previous report. In addition, the quantity of bacteria attached to the (PAH/PSS)4/(PAH/Fe2O3)2/PAH/ITO electrode was much greater than with the other methods. The electrode modified with the hollow capsules is promising for the development of MFCs in the future.  相似文献   

15.
Microbial fuel cells (MFCs) are an alternative electricity generating technology and efficient method for removing organic material from wastewater. Their low power densities, however, hinder practical applications. A primary limitation in these systems is the anode. The chemical makeup and surface area of the anode influences bacterial respiration rates and in turn, electricity generation. Some of the highest power densities have been reported using large surface area anodes, but due to variable chemical/physical factors (e.g., solution chemistry, architecture) among these studies, meaningful comparisons are difficult to make. In this work, we compare under identical conditions six micro/nano‐structured anodes in micro‐sized MFCs (47 μL). The six materials investigated include carbon nanotube (CNT), carbon nanofiber (CNF), gold/poly (ϵ‐caprolactone) microfiber (GPM), gold/poly(ϵ‐caprolactone) nanofiber (GPN), planar gold (PG), and conventional carbon paper (CP). The MFCs using three dimensional anode structures (CNT, CNF, GPM, and GPN) exhibited lower internal resistances than the macroscopic CP and two‐dimensional PG anodes. However, those novel anode materials suffered from major issues such as high activation loss and instability for long‐term operation, causing an enduring problem in creating widespread commercial MFC applications. The reported work provides an in‐depth understanding of the interplay between micro‐/nano‐structured anodes and active microbial biofilm, suggesting future directions of those novel anode materials for MFC technologies.  相似文献   

16.
微生物燃料电池(Microbial fuel cells,简称 MFCs)是一种生物电化学混合系统,利用微生物的氧化代谢作用将有机物或者无机物中的能量转化为电能,具有节能、减少污泥生成及能量转换的突出优势,目前得到研究者们的广泛关注。其中产电微生物是MFCs系统的核心组成部分,筛选及培养高效产电微生物对促进MFCs的产电性能具有重要作用。通过对产电微生物电子传递机制、产电微生物种类以及影响微生物产电的因素进行分析总结,综述了阳极产电微生物的最新研究进展,最后从微生物角度展望了未来的研究方向,以期为产电微生物在MFCs中的应用提供指导和支持。  相似文献   

17.
叶遥立  郭剑  潘彬  成少安 《化工学报》2015,66(2):773-778
采用3种活性炭粉制备具有不同电容的阳极,研究了双电层电容阳极对单室空气阴极微生物燃料电池启动、运行、性能、阳极生物膜附着的影响。结果表明:当电极表面积相近的情况下,阳极双电层电容从0.0012 F增加到22.72 F时,微生物燃料电池启动时间缩短了68.0%,电池的最大功率密度增加了16.8倍,达到546.1 m W·m-2。扫描电子显微镜的结果表明高电容的阳极表面附着的微生物量比低电容电极的高1倍。因此,微生物燃料电池性能受阳极双电层电容的影响,而与阳极表面积的相关性小。  相似文献   

18.
This investigation considers the use of activated carbon nanofiber nonwoven (ACNFN) as a novel anode for microbial fuel cells (MFCs). ACNFN has an ultra-thin, porous interconnected structure with high bioaccessible surface area. Reduced distances from the free surface to the interior maximize use of the available surface area and this, combined with high macroporosity ensures superior performance by decreasing transport limitations. ACNFN was fabricated by pyrolysis of electrospun polyacrylonitrile and subsequent steam activation. Extensive characterization, including surface morphology, material chemistry, surface area, mechanical strength and biofilm adhesion was performed to validate the use of the material as an MFC anode. Preliminary tests in a single chamber MFC showed current densities of 2715 A/m3 which is about 10% greater than the highest maximum obtained so far. Further, this was achieved with a conductivity of only a fifth of that of the corresponding material. The bio-electrochemical performance of ACNFN was also compared to that of commonly-used anodes, carbon cloth and granular activated carbon. Such anode architecture will greatly help mitigate low power density issues which are one of the main factors limiting widespread adoption of MFCs.  相似文献   

19.
微生物燃料电池处理渗滤液的研究进展   总被引:1,自引:0,他引:1  
微生物燃料电池(MFCs)是一种利用微生物将燃料中的化学能直接转化为电能的理想产电装置,具有产电与废弃物处置双重功效。为探究渗滤液MFCs处置的发展趋势,简述了MFCs的原理、特点和分类,总结了该技术在渗滤液处置过程中的研究进展,提出今后渗滤液MFCs处置研究将主要集中于三方面:①微生物,阳极优势微生物的选育与驯化富集;②交换膜,寻找价格低廉、性能高的交换膜;③阴极催化剂,研制高效、稳定且廉价的阴极催化剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号